Edit count of the user (user_editcount ) | null |
Name of the user account (user_name ) | '69.6.101.223' |
Age of the user account (user_age ) | 0 |
Groups (including implicit) the user is in (user_groups ) | [
0 => '*'
] |
Rights that the user has (user_rights ) | [
0 => 'createaccount',
1 => 'read',
2 => 'edit',
3 => 'createtalk',
4 => 'writeapi',
5 => 'viewmyprivateinfo',
6 => 'editmyprivateinfo',
7 => 'editmyoptions',
8 => 'abusefilter-log-detail',
9 => 'urlshortener-create-url',
10 => 'centralauth-merge',
11 => 'abusefilter-view',
12 => 'abusefilter-log',
13 => 'vipsscaler-test'
] |
Whether or not a user is editing through the mobile interface (user_mobile ) | false |
Whether the user is editing from mobile app (user_app ) | false |
Page ID (page_id ) | 333118 |
Page namespace (page_namespace ) | 0 |
Page title without namespace (page_title ) | 'Keratinocyte' |
Full page title (page_prefixedtitle ) | 'Keratinocyte' |
Edit protection level of the page (page_restrictions_edit ) | [] |
Last ten users to contribute to the page (page_recent_contributors ) | [
0 => '115.188.80.20',
1 => 'OAbot',
2 => 'CrafterNova',
3 => 'Citation bot',
4 => 'Claes Lindhardt',
5 => 'Apparition11',
6 => 'Jackooruht',
7 => 'WhinyTheYounger',
8 => 'InternetArchiveBot',
9 => 'Doremo'
] |
Page age in seconds (page_age ) | 649008565 |
Action (action ) | 'edit' |
Edit summary/reason (summary ) | '' |
Time since last page edit in seconds (page_last_edit_age ) | 5260373 |
Old content model (old_content_model ) | 'wikitext' |
New content model (new_content_model ) | 'wikitext' |
Old page wikitext, before the edit (old_wikitext ) | '{{Lead too short|date=November 2020}}
{{short description|Primary type of cell found in the epidermis}}
[[File:Micrograph of keratinocytes, basal cells and melanocytes in the epidermis.jpg|thumb|Micrograph of keratinocytes, [[Stratum basale|basal cells]] and [[melanocyte]]s in the epidermis]][[File:Proliferative response induced by a tumor promoter in the epidermis of a wild-type mouse - image.pbio.v11.i07.g001.png|thumb|Keratinocytes (stained green) in the skin of a mouse]]
'''Keratinocytes''' are the primary type of [[Cell (biology)|cell]] found in the [[epidermis (skin)|epidermis]], the outermost layer of the [[skin]]. In humans, they constitute 90% of epidermal skin cells.<ref name="Rooks">{{cite book| author1 = McGrath JA| author2 = Eady RAJ| author3 = Pope FM.| editor1 = Burns T| editor2 = Breathnach S| editor3 = Cox N| editor4 = Griffiths C.| year = 2004| title = Rook's Textbook of Dermatology| edition = 7th| publisher = Blackwell Publishing| isbn = 978-0-632-06429-8| doi = 10.1002/9780470750520.ch3| chapter = Anatomy and Organization of Human Skin| page = 4190| chapter-url = http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| access-date = 2010-06-01| archive-date = 2020-05-20| archive-url = https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| url-status = dead}}</ref> Basal cells in the [[stratum basale|basal layer (''stratum basale'')]] of the skin are sometimes referred to as '''basal keratinocytes'''.<ref name="Andrews">{{cite book| vauthors = James W, Berger T, Elston D| date = December 2005| title = Andrews' Diseases of the Skin: Clinical Dermatology| edition = 10th| publisher = Saunders| isbn = 978-0-7216-2921-6| pages = 5–6| url = http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| access-date = 2010-06-01| archive-url = https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| archive-date = 2010-10-11| url-status = dead}}</ref>
Keratinocytes form a barrier against environmental damage by [[heat]], [[UV radiation]], [[Dehydration|water loss]], [[pathogenic]] [[bacteria]], [[fungi]], [[parasite]]s, and [[virus]]es.
A number of structural [[protein]]s, [[enzyme]]s, [[lipid]]s, and [[antimicrobial peptide]]s contribute to maintain the important barrier function of the skin.
Keratinocytes differentiate from epidermal [[stem cells]] in the lower part of the epidermis and migrate towards the surface, finally becoming [[corneocytes]] and eventually being shed,<ref name=Gilbert2000 /><ref name=pmid17191035-2007 /><ref name=pmid11250888-2001 /><ref name=pmid19686098-2009 /> which happens every 40 to 56 days in humans.<ref name=pmid4551262-1972 />
==Function==
The primary function of keratinocytes is the formation of a barrier against environmental damage by heat, UV radiation, dehydration, pathogenic bacteria, fungi, parasites, and viruses.
Pathogens invading the upper layers of the epidermis can cause keratinocytes to produce [[proinflammatory]] mediators, particularly [[chemokine]]s such as [[CXCL10]] and [[CCL2]] (MCP-1) which attract [[monocyte]]s, [[natural killer cell]]s, [[T-lymphocyte]]s, and [[dendritic cell]]s to the site of pathogen invasion.<ref>{{Cite book|title=Janeway's immunobiology|last=Murphy, Kenneth (Kenneth M.)|others=Weaver, Casey|year=2017|isbn=9780815345053|edition= Ninth|location=New York, NY, USA|page=112|oclc=933586700}}</ref>
==Structure==
A number of [[structural protein]]s ([[filaggrin]], [[keratin]]), enzymes (e.g. [[protease]]s), lipids, and antimicrobial peptides ([[defensin]]s) contribute to maintain the important barrier function of the skin. Keratinization is part of the physical barrier formation ([[cornification]]), in which the keratinocytes produce more and more keratin and undergo terminal differentiation. The fully cornified keratinocytes that form the outermost layer are constantly shed off and replaced by new cells.<ref name=Gilbert2000>{{Cite book|title = Developmental Biology.|last = Gilbert|first = Scott F.|publisher = Sinauer Associates|year = 2000|isbn = 978-0878932436|chapter-url = https://www.ncbi.nlm.nih.gov/books/NBK10037/|chapter = The Epidermis and the Origin of Cutaneous Structures.|quote = Throughout life, the dead keratinized cells of the cornified layer are shed (humans lose about 1.5 grams of these cells each day*) and are replaced by new cells, the source of which is the mitotic cells of the Malpighian layer. Pigment cells (melanocytes) from the neural crest also reside in the Malpighian layer, where they transfer their pigment sacs (melanosomes) to the developing keratinocytes.|url-access = registration|url = https://archive.org/details/developmentalbio00gilb}}</ref>
==Cell differentiation==
Epidermal stem cells reside in the lower part of the epidermis (stratum basale) and are attached to the basement membrane through [[hemidesmosome]]s. Epidermal stem cells divide in a random manner yielding either more stem cells or transit amplifying cells.<ref name=pmid17191035-2007>{{cite journal |vauthors=Houben E, De Paepe K, Rogiers V |title=A keratinocyte's course of life |journal=Skin Pharmacology and Physiology |volume=20 |issue=3 |pages=122–32 |year=2007 |pmid=17191035 |doi=10.1159/000098163|s2cid=25671082 }}</ref> Some of the transit amplifying cells continue to proliferate then commit to [[cell differentiation|differentiate]] and migrate towards the surface of the epidermis. Those [[stem cells]] and their differentiated progeny are organized into columns named epidermal proliferation units.<ref name=pmid11250888-2001>{{cite journal |vauthors=Ghazizadeh S, Taichman LB |title=Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin |journal=The EMBO Journal |volume=20 |issue=6 |pages=1215–22 |date=March 2001 |pmid=11250888 |pmc=145528 |doi=10.1093/emboj/20.6.1215}}</ref>
During this differentiation process, keratinocytes permanently withdraw from the [[cell cycle]], initiate expression of epidermal differentiation markers, and move suprabasally as they become part of the [[stratum spinosum]], [[stratum granulosum]], and eventually [[corneocyte]]s in the [[stratum corneum]].
Corneocytes are keratinocytes that have completed their differentiation program and have lost their [[cell nucleus|nucleus]] and [[cytoplasm]]ic [[organelles]].<ref name=pmid19686098-2009>{{cite journal |author=Koster MI |title=Making an epidermis |journal=Annals of the New York Academy of Sciences |volume=1170 |issue= 1|pages=7–10 |date=July 2009 |pmid=19686098 |pmc=2861991 |doi=10.1111/j.1749-6632.2009.04363.x|bibcode=2009NYASA1170....7K }}</ref> Corneocytes will eventually be shed off through [[desquamation]] as new ones come in.
At each stage of differentiation, keratinocytes express specific [[keratins]], such as [[keratin 1]], [[keratin 5]], [[keratin 10]], and [[keratin 14]], but also other markers such as [[involucrin]], [[loricrin]], [[transglutaminase]], filaggrin, and [[caspase 14]].
In humans, it is estimated that keratinocytes [[cell turnover|turn over]] from stem cells to desquamation every 40–56 days,<ref name=pmid4551262-1972>{{cite journal |author=Halprin KM |title=Epidermal "turnover time"--a re-examination |journal=The British Journal of Dermatology |volume=86 |issue=1 |pages=14–9 |date=January 1972 |pmid=4551262 |doi=10.1111/j.1365-2133.1972.tb01886.x|s2cid=30165907 }}</ref> whereas in [[mice]] the estimated [[turnover time]] is 8–10 days.<ref>{{cite journal |vauthors=Potten CS, Saffhill R, Maibach HI |title=Measurement of the transit time for cells through the epidermis and stratum corneum of the mouse and guinea-pig |journal=Cell and Tissue Kinetics |volume=20 |issue=5 |pages=461–72 |date=September 1987 |pmid=3450396 |doi=10.1111/j.1365-2184.1987.tb01355.x|s2cid=22475141 }}</ref>
Factors promoting keratinocyte differentiation are:
* A [[calcium]] gradient, with the lowest concentration in the stratum basale and increasing concentrations until the outer stratum granulosum, where it reaches its maximum. Calcium concentration in the stratum corneum is very high in part because those relatively dry cells are not able to dissolve the ions.<ref name="Proksch">{{cite journal |vauthors=Proksch E, Brandner JM, Jensen JM |title=The skin: an indispensable barrier |journal=Experimental Dermatology |volume=17 |issue=12 |pages=1063–72 |date=December 2008 |pmid=19043850 |doi=10.1111/j.1600-0625.2008.00786.x|s2cid=31353914 }}</ref> Those elevations of [[extracellular]] calcium concentrations induces an increase in [[intracellular]] free calcium concentrations in keratinocytes.<ref>{{cite journal |vauthors=Hennings H, Kruszewski FH, Yuspa SH, Tucker RW |title=Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes |journal=Carcinogenesis |volume=10 |issue=4 |pages=777–80 |date=April 1989 |pmid=2702726 |doi=10.1093/carcin/10.4.777}}</ref> Part of that intracellular calcium increase comes from calcium released from intracellular stores<ref>{{cite journal |vauthors=Pillai S, Bikle DD |title=Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3 |journal=Journal of Cellular Physiology |volume=146 |issue=1 |pages=94–100 |date=January 1991 |pmid=1990023 |doi=10.1002/jcp.1041460113|s2cid=21264605 }}</ref> and another part comes from transmembrane calcium influx,<ref>{{cite journal | pmid=1645742 | year=1991 | last1=Reiss | first1=M | last2=Lipsey | first2=LR | last3=Zhou | first3=ZL | title=Extracellular calcium-dependent regulation of transmembrane calcium fluxes in murine keratinocytes | volume=147 | issue=2 | pages=281–91 | doi=10.1002/jcp.1041470213 | journal=Journal of Cellular Physiology| s2cid=25858560 }}</ref> through both calcium-sensitive [[chloride channels]]<ref>{{cite journal | pmid=1690740 | year=1990 | last1=Mauro | first1=TM | last2=Pappone | first2=PA | last3=Isseroff | first3=RR | title=Extracellular calcium affects the membrane currents of cultured human keratinocytes | volume=143 | issue=1 | pages=13–20 | doi=10.1002/jcp.1041430103 | journal=Journal of Cellular Physiology| s2cid=8072916 }}</ref> and voltage-independent cation channels permeable to calcium.<ref>{{cite journal | pmid=7684087 | year=1993 | last1=Mauro | first1=TM | last2=Isseroff | first2=RR | last3=Lasarow | first3=R | last4=Pappone | first4=PA | title=Ion channels are linked to differentiation in keratinocytes | volume=132 | issue=3 | pages=201–9 | journal=The Journal of Membrane Biology | doi=10.1007/BF00235738| s2cid=13063458 }}</ref> Moreover, it has been suggested that an extracellular calcium-sensing [[cell surface receptor|receptor]] (CaSR) also contributes to the rise in intracellular calcium concentration.<ref>{{cite journal | pmid=10469331 | year=1999 | last1=Tu | first1=CL | last2=Oda | first2=Y | last3=Bikle | first3=DD | title=Effects of a calcium receptor activator on the cellular response to calcium in human keratinocytes | volume=113 | issue=3 | pages=340–5 | doi=10.1046/j.1523-1747.1999.00698.x | journal=The Journal of Investigative Dermatology| doi-access=free }}</ref>
* [[Vitamin D3|Vitamin D<sub>3</sub>]] (cholecalciferol) regulates keratinocyte [[cell proliferation|proliferation]] and differentiation mostly by modulating calcium concentrations and regulating the expression of [[genes]] involved in keratinocyte differentiation.<ref>{{cite journal | doi=10.1016/0092-8674(80)90406-7 | title=Calcium regulation of growth and differentiation of mouse epidermal cells in culture | year=1980 | last1=Hennings | first1=Henry | last2=Michael | first2=Delores | last3=Cheng | first3=Christina | last4=Steinert | first4=Peter | last5=Holbrook | first5=Karen | last6=Yuspa | first6=Stuart H. | journal=Cell | volume=19 | pages=245–54 | pmid=6153576 | issue=1| s2cid=23896865 }}</ref><ref>{{cite journal | pmid=7910167 | year=1994 | last1=Su | first1=MJ | last2=Bikle | first2=DD | last3=Mancianti | first3=ML | last4=Pillai | first4=S | title=1,25-Dihydroxyvitamin D3 potentiates the keratinocyte response to calcium | volume=269 | issue=20 | pages=14723–9 | journal=The Journal of Biological Chemistry| doi=10.1016/S0021-9258(17)36685-1 | doi-access=free }}</ref> Keratinocytes are the only cells in the body with the entire vitamin D metabolic pathway from vitamin D production to [[catabolism]] and [[vitamin D receptor]] expression.<ref>{{cite journal | title=Cloning of Human 25-Hydroxyvitamin D-1 -Hydroxylase and Mutations Causing Vitamin D-Dependent Rickets Type 1 | year=1997 | last1=Fu | first1=G. K. | journal=Molecular Endocrinology | volume=11 | issue=13 | pages=1961–70 | pmid=9415400 | last2=Lin | first2=D | last3=Zhang | first3=MY | last4=Bikle | first4=DD | last5=Shackleton | first5=CH | last6=Miller | first6=WL | last7=Portale | first7=AA| doi=10.1210/mend.11.13.0035 | citeseerx=10.1.1.320.3485 }}</ref>
* [[Cathepsin E]].<ref>{{cite journal | doi=10.1515/BC.2011.060 | title=The role of cathepsin E in terminal differentiation of keratinocytes | year=2011 | last1=Kawakubo | first1=Tomoyo | last2=Yasukochi | first2=Atsushi | last3=Okamoto | first3=Kuniaki | last4=Okamoto | first4=Yoshiko | last5=Nakamura | first5=Seiji | last6=Yamamoto | first6=Kenji | journal=Biological Chemistry | volume=392 | issue=6 | pages=571–85 | pmid=21521076| hdl=2324/25561 | s2cid=21148292 | hdl-access=free }}</ref>
* TALE [[homeodomain]] [[transcription factors]].<ref>{{cite journal
| doi = 10.1242/jcs.077552
| title = TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier
| year = 2011
| last1 = Jackson
| first1 = B.
| last2 = Brown
| first2 = S. J.
| last3 = Avilion
| first3 = A. A.
| last4 = O'Shaughnessy
| first4 = R. F. L.
| last5 = Sully
| first5 = K.
| last6 = Akinduro
| first6 = O.
| last7 = Murphy
| first7 = M.
| last8 = Cleary
| first8 = M. L.
| last9 = Byrne
| first9 = C.
| journal = Journal of Cell Science
| volume = 124
| issue = 10
| pages = 1681–1690
| pmid=21511732
| pmc=3183491
}}</ref>
* [[Hydrocortisone]].<ref name="cortisone">{{cite journal | pmid=1052771 | year=1975 | last1=Rheinwald | first1=JG | last2=Green | first2=H | title=Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells | volume=6 | issue=3 | pages=331–43 | journal=Cell | doi=10.1016/S0092-8674(75)80001-8| s2cid=53294766 }}</ref>
Since keratinocyte differentiation inhibits keratinocyte proliferation, factors that promote keratinocyte proliferation should be considered as preventing differentiation. These factors include:
* The [[transcription factor]] p63, which prevents epidermal stem cells from differentiating into keratinocytes.<ref>{{cite journal | pmid=17114587 | year=2006 | last1=Truong | first1=AB | last2=Kretz | first2=M | last3=Ridky | first3=TW | last4=Kimmel | first4=R | last5=Khavari | first5=PA | title=P63 regulates proliferation and differentiation of developmentally mature keratinocytes | volume=20 | issue=22 | pages=3185–97 | doi=10.1101/gad.1463206 | pmc=1635152 | journal=Genes & Development}}</ref> Mutations in the p63 DNA-binding domain are associated with ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome. The transcriptome of p63 mutant keratinocytes deviated from the normal epidermal cell identity. <ref name="PMID30566872">{{cite journal | vauthors = Qu J, Tanis SE, Smits JP, Kouwenhoven EN, Oti M, van den Bogaard EH, Logie C, Stunnenberg HG, van Bokhoven H, Mulder KW, Zhou H | title = Mutant p63 affects epidermal cell identity through rewiring the enhancer landscape | journal = Cell Reports | volume = 25 | issue = 12 | pages = 3490–503 | date = December 2018 | pmid = 30566872 | doi = 10.1016/j.celrep.2018.11.039 | doi-access = free | hdl = 2066/200262 | hdl-access = free }}</ref>
* [[Vitamin A]] and its analogues.<ref>{{cite journal | pmid=6169442 | year=1981 | last1=Fuchs | first1=E | last2=Green | first2=H | title=Regulation of terminal differentiation of cultured human keratinocytes by vitamin A | volume=25 | issue=3 | pages=617–25 | journal=Cell | doi=10.1016/0092-8674(81)90169-0| s2cid=23796587 }}</ref>
* [[Epidermal growth factor]].<ref>{{cite journal | pmid=299924 | year=1977 | last1=Rheinwald | first1=JG | last2=Green | first2=H | title=Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes | volume=265 | issue=5593 | pages=421–4 | journal=Nature | doi=10.1038/265421a0| bibcode=1977Natur.265..421R | s2cid=27427541 }}</ref>
* [[TGF alpha|Transforming growth factor alpha]].<ref>{{cite journal | pmid=3497724 | year=1987 | last1=Barrandon | first1=Y | last2=Green | first2=H | title=Cell migration is essential for sustained growth of keratinocyte colonies: The roles of transforming growth factor-alpha and epidermal growth factor | volume=50 | issue=7 | pages=1131–7 | journal=Cell | doi=10.1016/0092-8674(87)90179-6| s2cid=21054962 }}</ref>
* [[Cholera toxin]].<ref name="cortisone" />
==Interaction with other cells==
Within the epidermis keratinocytes are associated with other cell types such as [[melanocytes]] and [[Langerhans cell]]s. Keratinocytes form [[tight junction]]s with the nerves of the skin and hold the Langerhans cells and intra-dermal [[lymphocytes]] in position within the epidermis. Keratinocytes also modulate the [[immune system]]: apart from the above-mentioned [[antimicrobial peptides]] and [[chemokines]] they are also potent producers of anti-inflammatory mediators such as [[interleukin 10|IL-10]] and [[Transforming growth factor (TGF) beta|TGF-β]]. When activated, they can stimulate [[cutaneous]] [[inflammation]] and Langerhans cell activation via [[Tumor necrosis factor-alpha|TNFα]] and [[IL1B|IL-1β]] secretion.{{Citation needed|date=June 2010}}
Keratinocytes contribute to protecting the body from [[ultraviolet]] radiation (UVR) by taking up [[melanosome]]s, vesicles containing the endogenous [[photoprotection|photoprotectant]] [[melanin]], from epidermal melanocytes. Each melanocyte in the epidermis has several [[dendrite]]s that stretch out to connect it with many keratinocytes. The melanin is then stored within keratinocytes and melanocytes in the perinuclear area as supranuclear “caps”, where it protects the [[DNA]] from UVR-induced [[DNA damage#DNA damage|damage]].<ref>
{{cite journal
|author1=Brenner M |author2=Hearing VJ. | date = May–June 2008
| title = The Protective Role of Melanin Against UV Damage in Human Skin
| journal = [[Photochemistry and Photobiology]]
| volume = 84
| issue = 3
| pages = 539–549
| doi = 10.1111/j.1751-1097.2007.00226.x
| pmid = 18435612
| pmc = 2671032
}}</ref>
==Role in wound healing==
[[Wounds]] to the [[skin]] will be repaired in part by the migration of keratinocytes to fill in the gap created by the wound. The first set of keratinocytes to participate in that repair come from the bulge region of the [[hair follicle]] and will only survive transiently. Within the healed epidermis they will be replaced by keratinocytes originating from the epidermis.<ref>{{cite journal | pmid=16288281 | year=2005 | last1=Ito | first1=M | last2=Liu | first2=Y | last3=Yang | first3=Z | last4=Nguyen | first4=J | last5=Liang | first5=F | last6=Morris | first6=RJ | last7=Cotsarelis | first7=G | title=Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis | volume=11 | issue=12 | pages=1351–4 | doi=10.1038/nm1328 | journal=Nature Medicine| s2cid=52869761 }}</ref><ref>{{cite journal | pmid=16203973 | year=2005 | last1=Claudinot | first1=S | last2=Nicolas | first2=M | last3=Oshima | first3=H | last4=Rochat | first4=A | last5=Barrandon | first5=Y | title=Long-term renewal of hair follicles from clonogenic multipotent stem cells | volume=102 | issue=41 | pages=14677–82 | doi=10.1073/pnas.0507250102 | pmc=1253596 | journal=Proceedings of the National Academy of Sciences of the United States of America| bibcode=2005PNAS..10214677C | doi-access=free }}</ref>
At the opposite, epidermal keratinocytes, can contribute to ''de novo'' hair follicle formation during the healing of large wounds.<ref>{{cite journal | pmid=17507982 | year=2007 | last1=Ito | first1=M | last2=Yang | first2=Z | last3=Andl | first3=T | last4=Cui | first4=C | last5=Kim | first5=N | last6=Millar | first6=SE | last7=Cotsarelis | first7=G | title=Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding | volume=447 | issue=7142 | pages=316–20 | doi=10.1038/nature05766 | journal=Nature| bibcode=2007Natur.447..316I | s2cid=887738 }}</ref>
Functional keratinocytes are needed for tympanic perforation healing.<ref>Y Shen, Y Guo, C Du, M Wilczynska, S Hellström, T Ny, Mice Deficient in Urokinase-Type Plasminogen Activator Have Delayed Healing of Tympanic Membrane Perforations, PLOS ONE, 2012</ref>
==Sunburn cells==
A sunburn [[cell (biology)|cell]] is a keratinocyte with a [[pyknotic]] [[cell nucleus|nucleus]] and [[eosinophilic]] [[cytoplasm]] that appears after exposure to [[Ultraviolet C|UVC]] or [[Ultraviolet B|UVB]] radiation or [[Ultraviolet A|UVA]] in the presence of [[psoralen]]s. It shows premature and abnormal [[keratinization]], and has been described as an example of [[apoptosis]].<ref>
{{cite journal
| author = Young AR
| date = June 1987
| title = The sunburn cell
| journal = [[Photodermatology]]
| volume = 4
| issue = 3
| pages = 127–134
| pmid = 3317295
}}</ref><ref>
{{cite journal
|vauthors=Sheehan JM, Young AR | date = June 2002
| title = The sunburn cell revisited: an update on mechanistic aspects
| journal = [[Photochemical and Photobiological Sciences]]
| volume = 1
| issue = 6
| pages = 365–377
| doi = 10.1039/b108291d
| pmid = 12856704
| s2cid = 21184034
}}</ref>
==Aging==
With age, tissue [[homeostasis]] declines partly because [[stem cell|stem/progenitor cells]] fail to self-renew or [[cellular differentiation|differentiate]]. [[DNA damage (naturally occurring)|DNA damage]] caused by exposure of stem/progenitor cells to [[reactive oxygen species]] (ROS) may play a key role in [[epidermis|epidermal stem cell]] aging. Mitochondrial superoxide dismutase ([[SOD2]]) ordinarily protects against ROS. Loss of SOD2 in mouse epidermal cells was observed to cause cellular [[senescence]] that irreversibly arrested proliferation in a fraction of keratinocytes.<ref name="pmid26240345">{{cite journal |vauthors=Velarde MC, Demaria M, Melov S, Campisi J |title=Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=112 |issue=33 |pages=10407–12 |date=August 2015 |pmid=26240345 |pmc=4547253 |doi=10.1073/pnas.1505675112 |bibcode=2015PNAS..11210407V |doi-access=free }}</ref> In older mice, SOD2 deficiency delayed [[wound]] closure and reduced epidermal thickness.<ref name="pmid26240345" />
==Civatte body==
[[File:Civatte body.jpg|thumb|Civatte body]]
A Civatte body (named after the French dermatologist Achille Civatte, 1877–1956)<ref>{{cite book |last1=Crissey |first1=John Thorne |last2=Parish |first2=Lawrence C. |last3=Holubar |first3=Karl |title=Historical Atlas of Dermatology and Dermatologists |date=2002 |publisher=CRC Press |location=Boca Raton, FL |isbn=1-84214-100-7 |page=147}}</ref> is a damaged basal keratinocyte that has undergone [[apoptosis]], and consist largely of keratin intermediate filaments, and are almost invariably covered with [[immunoglobulin]]s, mainly IgM.<ref name="SeemaPranay2013">{{cite journal|last1=Seema|first1=Chhabra|last2=Pranay|first2=Tanwar|last3=Kumar|first3=AroraSandeep|title=Civatte bodies: A diagnostic clue|journal=Indian Journal of Dermatology|volume=58|issue=4|year=2013|page=327|issn=0019-5154|doi=10.4103/0019-5154.113974|pmid=23919028|pmc=3726905 |doi-access=free }}</ref> Civatte bodies are characteristically found in skin lesions of various [[dermatosis|dermatoses]], particularly [[lichen planus]] and [[discoid lupus erythematosus]].<ref name="SeemaPranay2013"/> They may also be found in [[graft-versus-host disease]], [[adverse drug reaction]]s, inflammatory [[keratosis]] (such as lichenoid [[actinic keratosis]] and [[lichen planus]]-like keratosis), [[erythema multiforme]], [[bullous pemphigoid]], [[eczema]], [[lichen planopilaris]], [[febrile neutrophilic dermatosis]], [[toxic epidermal necrolysis]], [[herpes simplex]] and [[varicella zoster]] lesions, [[dermatitis herpetiformis]], [[porphyria cutanea tarda]], [[sarcoidosis]], [[subcorneal pustular dermatosis]], [[transient acantholytic dermatosis]] and [[epidermolytic hyperkeratosis]].<ref name="SeemaPranay2013"/>
== See also ==
* [[epidermis (skin)|Epidermis]]
* [[Skin]]
* [[Corneocyte]]
* [[Keratin]]
* [[HaCaT]]
*[[List of human cell types derived from the germ layers]]
*[[Epidermidibacterium keratini]]
*[[List of distinct cell types in the adult human body]]
== References ==
{{Reflist|30em}}
==External links==
{{Commons category|Keratinocytes}}
* {{cite journal |vauthors=Tang L, Wu JJ, Ma Q, etal |title=Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization |journal=The British Journal of Dermatology |volume=163 |issue=1 |pages=38–47 |date=July 2010 |pmid=20222924 |doi=10.1111/j.1365-2133.2010.09748.x|s2cid=2387064 }}
{{Skin Layers and Appendages}}
[[Category:Skin anatomy]]
[[Category:Sequestering cells]]
[[Category:Human cells]]' |
New page wikitext, after the edit (new_wikitext ) | '{{Lead too short|date=November 2020}}
{{short description|Primary type of cell found in the epidermis}}
[[File:Micrograph of keratinocytes, basal cells and melanocytes in the epidermis.jpg|thumb|Micrograph of keratinocytes, [[Stratum basale|basal cells]] and [[melanocyte]]s in the epidermis]][[File:Proliferative response induced by a tumor promoter in the epidermis of a wild-type mouse - image.pbio.v11.i07.g001.png|thumb|Keratinocytes (stained green) in the skin of a mouse]]
'''Keratinocytes''' are the primary type of sigma [[Cell (biology)|cell]] found in the [[epidermis (skin)|epidermis]], the outermost layer of the [[skin]]. In humans, they constitute 90% of epidermal skin cells.<ref name="Rooks">{{cite book| author1 = McGrath JA| author2 = Eady RAJ| author3 = Pope FM.| editor1 = Burns T| editor2 = Breathnach S| editor3 = Cox N| editor4 = Griffiths C.| year = 2004| title = Rook's Textbook of Dermatology| edition = 7th| publisher = Blackwell Publishing| isbn = 978-0-632-06429-8| doi = 10.1002/9780470750520.ch3| chapter = Anatomy and Organization of Human Skin| page = 4190| chapter-url = http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| access-date = 2010-06-01| archive-date = 2020-05-20| archive-url = https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| url-status = dead}}</ref> Basal cells in the [[stratum basale|basal layer (''stratum basale'')]] of the skin are sometimes referred to as '''basal keratinocytes'''.<ref name="Andrews">{{cite book| vauthors = James W, Berger T, Elston D| date = December 2005| title = Andrews' Diseases of the Skin: Clinical Dermatology| edition = 10th| publisher = Saunders| isbn = 978-0-7216-2921-6| pages = 5–6| url = http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| access-date = 2010-06-01| archive-url = https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| archive-date = 2010-10-11| url-status = dead}}</ref>
Keratinocytes form a barrier against environmental damage by [[heat]], [[UV radiation]], [[Dehydration|water loss]], [[pathogenic]] [[bacteria]], [[fungi]], [[parasite]]s, and [[virus]]es.
A number of structural [[protein]]s, [[enzyme]]s, [[lipid]]s, and [[antimicrobial peptide]]s contribute to maintain the important barrier function of the skin.
Keratinocytes differentiate from epidermal [[stem cells]] in the lower part of the epidermis and migrate towards the surface, finally becoming [[corneocytes]] and eventually being shed,<ref name=Gilbert2000 /><ref name=pmid17191035-2007 /><ref name=pmid11250888-2001 /><ref name=pmid19686098-2009 /> which happens every 40 to 56 days in humans.<ref name=pmid4551262-1972 />
==Function==
The primary function of keratinocytes is the formation of a barrier against environmental damage by heat, UV radiation, dehydration, pathogenic bacteria, fungi, parasites, and viruses.
Pathogens invading the upper layers of the epidermis can cause keratinocytes to produce [[proinflammatory]] mediators, particularly [[chemokine]]s such as [[CXCL10]] and [[CCL2]] (MCP-1) which attract [[monocyte]]s, [[natural killer cell]]s, [[T-lymphocyte]]s, and [[dendritic cell]]s to the site of pathogen invasion.<ref>{{Cite book|title=Janeway's immunobiology|last=Murphy, Kenneth (Kenneth M.)|others=Weaver, Casey|year=2017|isbn=9780815345053|edition= Ninth|location=New York, NY, USA|page=112|oclc=933586700}}</ref>
==Structure==
A number of [[structural protein]]s ([[filaggrin]], [[keratin]]), enzymes (e.g. [[protease]]s), lipids, and antimicrobial peptides ([[defensin]]s) contribute to maintain the important barrier function of the skin. Keratinization is part of the physical barrier formation ([[cornification]]), in which the keratinocytes produce more and more keratin and undergo terminal differentiation. The fully cornified keratinocytes that form the outermost layer are constantly shed off and replaced by new cells.<ref name=Gilbert2000>{{Cite book|title = Developmental Biology.|last = Gilbert|first = Scott F.|publisher = Sinauer Associates|year = 2000|isbn = 978-0878932436|chapter-url = https://www.ncbi.nlm.nih.gov/books/NBK10037/|chapter = The Epidermis and the Origin of Cutaneous Structures.|quote = Throughout life, the dead keratinized cells of the cornified layer are shed (humans lose about 1.5 grams of these cells each day*) and are replaced by new cells, the source of which is the mitotic cells of the Malpighian layer. Pigment cells (melanocytes) from the neural crest also reside in the Malpighian layer, where they transfer their pigment sacs (melanosomes) to the developing keratinocytes.|url-access = registration|url = https://archive.org/details/developmentalbio00gilb}}</ref>
==Cell differentiation==
Epidermal stem cells reside in the lower part of the epidermis (stratum basale) and are attached to the basement membrane through [[hemidesmosome]]s. Epidermal stem cells divide in a random manner yielding either more stem cells or transit amplifying cells.<ref name=pmid17191035-2007>{{cite journal |vauthors=Houben E, De Paepe K, Rogiers V |title=A keratinocyte's course of life |journal=Skin Pharmacology and Physiology |volume=20 |issue=3 |pages=122–32 |year=2007 |pmid=17191035 |doi=10.1159/000098163|s2cid=25671082 }}</ref> Some of the transit amplifying cells continue to proliferate then commit to [[cell differentiation|differentiate]] and migrate towards the surface of the epidermis. Those [[stem cells]] and their differentiated progeny are organized into columns named epidermal proliferation units.<ref name=pmid11250888-2001>{{cite journal |vauthors=Ghazizadeh S, Taichman LB |title=Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin |journal=The EMBO Journal |volume=20 |issue=6 |pages=1215–22 |date=March 2001 |pmid=11250888 |pmc=145528 |doi=10.1093/emboj/20.6.1215}}</ref>
During this differentiation process, keratinocytes permanently withdraw from the [[cell cycle]], initiate expression of epidermal differentiation markers, and move suprabasally as they become part of the [[stratum spinosum]], [[stratum granulosum]], and eventually [[corneocyte]]s in the [[stratum corneum]].
Corneocytes are keratinocytes that have completed their differentiation program and have lost their [[cell nucleus|nucleus]] and [[cytoplasm]]ic [[organelles]].<ref name=pmid19686098-2009>{{cite journal |author=Koster MI |title=Making an epidermis |journal=Annals of the New York Academy of Sciences |volume=1170 |issue= 1|pages=7–10 |date=July 2009 |pmid=19686098 |pmc=2861991 |doi=10.1111/j.1749-6632.2009.04363.x|bibcode=2009NYASA1170....7K }}</ref> Corneocytes will eventually be shed off through [[desquamation]] as new ones come in.
At each stage of differentiation, keratinocytes express specific [[keratins]], such as [[keratin 1]], [[keratin 5]], [[keratin 10]], and [[keratin 14]], but also other markers such as [[involucrin]], [[loricrin]], [[transglutaminase]], filaggrin, and [[caspase 14]].
In humans, it is estimated that keratinocytes [[cell turnover|turn over]] from stem cells to desquamation every 40–56 days,<ref name=pmid4551262-1972>{{cite journal |author=Halprin KM |title=Epidermal "turnover time"--a re-examination |journal=The British Journal of Dermatology |volume=86 |issue=1 |pages=14–9 |date=January 1972 |pmid=4551262 |doi=10.1111/j.1365-2133.1972.tb01886.x|s2cid=30165907 }}</ref> whereas in [[mice]] the estimated [[turnover time]] is 8–10 days.<ref>{{cite journal |vauthors=Potten CS, Saffhill R, Maibach HI |title=Measurement of the transit time for cells through the epidermis and stratum corneum of the mouse and guinea-pig |journal=Cell and Tissue Kinetics |volume=20 |issue=5 |pages=461–72 |date=September 1987 |pmid=3450396 |doi=10.1111/j.1365-2184.1987.tb01355.x|s2cid=22475141 }}</ref>
Factors promoting keratinocyte differentiation are:
* A [[calcium]] gradient, with the lowest concentration in the stratum basale and increasing concentrations until the outer stratum granulosum, where it reaches its maximum. Calcium concentration in the stratum corneum is very high in part because those relatively dry cells are not able to dissolve the ions.<ref name="Proksch">{{cite journal |vauthors=Proksch E, Brandner JM, Jensen JM |title=The skin: an indispensable barrier |journal=Experimental Dermatology |volume=17 |issue=12 |pages=1063–72 |date=December 2008 |pmid=19043850 |doi=10.1111/j.1600-0625.2008.00786.x|s2cid=31353914 }}</ref> Those elevations of [[extracellular]] calcium concentrations induces an increase in [[intracellular]] free calcium concentrations in keratinocytes.<ref>{{cite journal |vauthors=Hennings H, Kruszewski FH, Yuspa SH, Tucker RW |title=Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes |journal=Carcinogenesis |volume=10 |issue=4 |pages=777–80 |date=April 1989 |pmid=2702726 |doi=10.1093/carcin/10.4.777}}</ref> Part of that intracellular calcium increase comes from calcium released from intracellular stores<ref>{{cite journal |vauthors=Pillai S, Bikle DD |title=Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3 |journal=Journal of Cellular Physiology |volume=146 |issue=1 |pages=94–100 |date=January 1991 |pmid=1990023 |doi=10.1002/jcp.1041460113|s2cid=21264605 }}</ref> and another part comes from transmembrane calcium influx,<ref>{{cite journal | pmid=1645742 | year=1991 | last1=Reiss | first1=M | last2=Lipsey | first2=LR | last3=Zhou | first3=ZL | title=Extracellular calcium-dependent regulation of transmembrane calcium fluxes in murine keratinocytes | volume=147 | issue=2 | pages=281–91 | doi=10.1002/jcp.1041470213 | journal=Journal of Cellular Physiology| s2cid=25858560 }}</ref> through both calcium-sensitive [[chloride channels]]<ref>{{cite journal | pmid=1690740 | year=1990 | last1=Mauro | first1=TM | last2=Pappone | first2=PA | last3=Isseroff | first3=RR | title=Extracellular calcium affects the membrane currents of cultured human keratinocytes | volume=143 | issue=1 | pages=13–20 | doi=10.1002/jcp.1041430103 | journal=Journal of Cellular Physiology| s2cid=8072916 }}</ref> and voltage-independent cation channels permeable to calcium.<ref>{{cite journal | pmid=7684087 | year=1993 | last1=Mauro | first1=TM | last2=Isseroff | first2=RR | last3=Lasarow | first3=R | last4=Pappone | first4=PA | title=Ion channels are linked to differentiation in keratinocytes | volume=132 | issue=3 | pages=201–9 | journal=The Journal of Membrane Biology | doi=10.1007/BF00235738| s2cid=13063458 }}</ref> Moreover, it has been suggested that an extracellular calcium-sensing [[cell surface receptor|receptor]] (CaSR) also contributes to the rise in intracellular calcium concentration.<ref>{{cite journal | pmid=10469331 | year=1999 | last1=Tu | first1=CL | last2=Oda | first2=Y | last3=Bikle | first3=DD | title=Effects of a calcium receptor activator on the cellular response to calcium in human keratinocytes | volume=113 | issue=3 | pages=340–5 | doi=10.1046/j.1523-1747.1999.00698.x | journal=The Journal of Investigative Dermatology| doi-access=free }}</ref>
* [[Vitamin D3|Vitamin D<sub>3</sub>]] (cholecalciferol) regulates keratinocyte [[cell proliferation|proliferation]] and differentiation mostly by modulating calcium concentrations and regulating the expression of [[genes]] involved in keratinocyte differentiation.<ref>{{cite journal | doi=10.1016/0092-8674(80)90406-7 | title=Calcium regulation of growth and differentiation of mouse epidermal cells in culture | year=1980 | last1=Hennings | first1=Henry | last2=Michael | first2=Delores | last3=Cheng | first3=Christina | last4=Steinert | first4=Peter | last5=Holbrook | first5=Karen | last6=Yuspa | first6=Stuart H. | journal=Cell | volume=19 | pages=245–54 | pmid=6153576 | issue=1| s2cid=23896865 }}</ref><ref>{{cite journal | pmid=7910167 | year=1994 | last1=Su | first1=MJ | last2=Bikle | first2=DD | last3=Mancianti | first3=ML | last4=Pillai | first4=S | title=1,25-Dihydroxyvitamin D3 potentiates the keratinocyte response to calcium | volume=269 | issue=20 | pages=14723–9 | journal=The Journal of Biological Chemistry| doi=10.1016/S0021-9258(17)36685-1 | doi-access=free }}</ref> Keratinocytes are the only cells in the body with the entire vitamin D metabolic pathway from vitamin D production to [[catabolism]] and [[vitamin D receptor]] expression.<ref>{{cite journal | title=Cloning of Human 25-Hydroxyvitamin D-1 -Hydroxylase and Mutations Causing Vitamin D-Dependent Rickets Type 1 | year=1997 | last1=Fu | first1=G. K. | journal=Molecular Endocrinology | volume=11 | issue=13 | pages=1961–70 | pmid=9415400 | last2=Lin | first2=D | last3=Zhang | first3=MY | last4=Bikle | first4=DD | last5=Shackleton | first5=CH | last6=Miller | first6=WL | last7=Portale | first7=AA| doi=10.1210/mend.11.13.0035 | citeseerx=10.1.1.320.3485 }}</ref>
* [[Cathepsin E]].<ref>{{cite journal | doi=10.1515/BC.2011.060 | title=The role of cathepsin E in terminal differentiation of keratinocytes | year=2011 | last1=Kawakubo | first1=Tomoyo | last2=Yasukochi | first2=Atsushi | last3=Okamoto | first3=Kuniaki | last4=Okamoto | first4=Yoshiko | last5=Nakamura | first5=Seiji | last6=Yamamoto | first6=Kenji | journal=Biological Chemistry | volume=392 | issue=6 | pages=571–85 | pmid=21521076| hdl=2324/25561 | s2cid=21148292 | hdl-access=free }}</ref>
* TALE [[homeodomain]] [[transcription factors]].<ref>{{cite journal
| doi = 10.1242/jcs.077552
| title = TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier
| year = 2011
| last1 = Jackson
| first1 = B.
| last2 = Brown
| first2 = S. J.
| last3 = Avilion
| first3 = A. A.
| last4 = O'Shaughnessy
| first4 = R. F. L.
| last5 = Sully
| first5 = K.
| last6 = Akinduro
| first6 = O.
| last7 = Murphy
| first7 = M.
| last8 = Cleary
| first8 = M. L.
| last9 = Byrne
| first9 = C.
| journal = Journal of Cell Science
| volume = 124
| issue = 10
| pages = 1681–1690
| pmid=21511732
| pmc=3183491
}}</ref>
* [[Hydrocortisone]].<ref name="cortisone">{{cite journal | pmid=1052771 | year=1975 | last1=Rheinwald | first1=JG | last2=Green | first2=H | title=Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells | volume=6 | issue=3 | pages=331–43 | journal=Cell | doi=10.1016/S0092-8674(75)80001-8| s2cid=53294766 }}</ref>
Since keratinocyte differentiation inhibits keratinocyte proliferation, factors that promote keratinocyte proliferation should be considered as preventing differentiation. These factors include:
* The [[transcription factor]] p63, which prevents epidermal stem cells from differentiating into keratinocytes.<ref>{{cite journal | pmid=17114587 | year=2006 | last1=Truong | first1=AB | last2=Kretz | first2=M | last3=Ridky | first3=TW | last4=Kimmel | first4=R | last5=Khavari | first5=PA | title=P63 regulates proliferation and differentiation of developmentally mature keratinocytes | volume=20 | issue=22 | pages=3185–97 | doi=10.1101/gad.1463206 | pmc=1635152 | journal=Genes & Development}}</ref> Mutations in the p63 DNA-binding domain are associated with ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome. The transcriptome of p63 mutant keratinocytes deviated from the normal epidermal cell identity. <ref name="PMID30566872">{{cite journal | vauthors = Qu J, Tanis SE, Smits JP, Kouwenhoven EN, Oti M, van den Bogaard EH, Logie C, Stunnenberg HG, van Bokhoven H, Mulder KW, Zhou H | title = Mutant p63 affects epidermal cell identity through rewiring the enhancer landscape | journal = Cell Reports | volume = 25 | issue = 12 | pages = 3490–503 | date = December 2018 | pmid = 30566872 | doi = 10.1016/j.celrep.2018.11.039 | doi-access = free | hdl = 2066/200262 | hdl-access = free }}</ref>
* [[Vitamin A]] and its analogues.<ref>{{cite journal | pmid=6169442 | year=1981 | last1=Fuchs | first1=E | last2=Green | first2=H | title=Regulation of terminal differentiation of cultured human keratinocytes by vitamin A | volume=25 | issue=3 | pages=617–25 | journal=Cell | doi=10.1016/0092-8674(81)90169-0| s2cid=23796587 }}</ref>
* [[Epidermal growth factor]].<ref>{{cite journal | pmid=299924 | year=1977 | last1=Rheinwald | first1=JG | last2=Green | first2=H | title=Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes | volume=265 | issue=5593 | pages=421–4 | journal=Nature | doi=10.1038/265421a0| bibcode=1977Natur.265..421R | s2cid=27427541 }}</ref>
* [[TGF alpha|Transforming growth factor alpha]].<ref>{{cite journal | pmid=3497724 | year=1987 | last1=Barrandon | first1=Y | last2=Green | first2=H | title=Cell migration is essential for sustained growth of keratinocyte colonies: The roles of transforming growth factor-alpha and epidermal growth factor | volume=50 | issue=7 | pages=1131–7 | journal=Cell | doi=10.1016/0092-8674(87)90179-6| s2cid=21054962 }}</ref>
* [[Cholera toxin]].<ref name="cortisone" />
==Interaction with other cells==
Within the epidermis keratinocytes are associated with other cell types such as [[melanocytes]] and [[Langerhans cell]]s. Keratinocytes form [[tight junction]]s with the nerves of the skin and hold the Langerhans cells and intra-dermal [[lymphocytes]] in position within the epidermis. Keratinocytes also modulate the [[immune system]]: apart from the above-mentioned [[antimicrobial peptides]] and [[chemokines]] they are also potent producers of anti-inflammatory mediators such as [[interleukin 10|IL-10]] and [[Transforming growth factor (TGF) beta|TGF-β]]. When activated, they can stimulate [[cutaneous]] [[inflammation]] and Langerhans cell activation via [[Tumor necrosis factor-alpha|TNFα]] and [[IL1B|IL-1β]] secretion.{{Citation needed|date=June 2010}}
Keratinocytes contribute to protecting the body from [[ultraviolet]] radiation (UVR) by taking up [[melanosome]]s, vesicles containing the endogenous [[photoprotection|photoprotectant]] [[melanin]], from epidermal melanocytes. Each melanocyte in the epidermis has several [[dendrite]]s that stretch out to connect it with many keratinocytes. The melanin is then stored within keratinocytes and melanocytes in the perinuclear area as supranuclear “caps”, where it protects the [[DNA]] from UVR-induced [[DNA damage#DNA damage|damage]].<ref>
{{cite journal
|author1=Brenner M |author2=Hearing VJ. | date = May–June 2008
| title = The Protective Role of Melanin Against UV Damage in Human Skin
| journal = [[Photochemistry and Photobiology]]
| volume = 84
| issue = 3
| pages = 539–549
| doi = 10.1111/j.1751-1097.2007.00226.x
| pmid = 18435612
| pmc = 2671032
}}</ref>
==Role in wound healing==
[[Wounds]] to the [[skin]] will be repaired in part by the migration of keratinocytes to fill in the gap created by the wound. The first set of keratinocytes to participate in that repair come from the bulge region of the [[hair follicle]] and will only survive transiently. Within the healed epidermis they will be replaced by keratinocytes originating from the epidermis.<ref>{{cite journal | pmid=16288281 | year=2005 | last1=Ito | first1=M | last2=Liu | first2=Y | last3=Yang | first3=Z | last4=Nguyen | first4=J | last5=Liang | first5=F | last6=Morris | first6=RJ | last7=Cotsarelis | first7=G | title=Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis | volume=11 | issue=12 | pages=1351–4 | doi=10.1038/nm1328 | journal=Nature Medicine| s2cid=52869761 }}</ref><ref>{{cite journal | pmid=16203973 | year=2005 | last1=Claudinot | first1=S | last2=Nicolas | first2=M | last3=Oshima | first3=H | last4=Rochat | first4=A | last5=Barrandon | first5=Y | title=Long-term renewal of hair follicles from clonogenic multipotent stem cells | volume=102 | issue=41 | pages=14677–82 | doi=10.1073/pnas.0507250102 | pmc=1253596 | journal=Proceedings of the National Academy of Sciences of the United States of America| bibcode=2005PNAS..10214677C | doi-access=free }}</ref>
At the opposite, epidermal keratinocytes, can contribute to ''de novo'' hair follicle formation during the healing of large wounds.<ref>{{cite journal | pmid=17507982 | year=2007 | last1=Ito | first1=M | last2=Yang | first2=Z | last3=Andl | first3=T | last4=Cui | first4=C | last5=Kim | first5=N | last6=Millar | first6=SE | last7=Cotsarelis | first7=G | title=Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding | volume=447 | issue=7142 | pages=316–20 | doi=10.1038/nature05766 | journal=Nature| bibcode=2007Natur.447..316I | s2cid=887738 }}</ref>
Functional keratinocytes are needed for tympanic perforation healing.<ref>Y Shen, Y Guo, C Du, M Wilczynska, S Hellström, T Ny, Mice Deficient in Urokinase-Type Plasminogen Activator Have Delayed Healing of Tympanic Membrane Perforations, PLOS ONE, 2012</ref>
==Sunburn cells==
A sunburn [[cell (biology)|cell]] is a keratinocyte with a [[pyknotic]] [[cell nucleus|nucleus]] and [[eosinophilic]] [[cytoplasm]] that appears after exposure to [[Ultraviolet C|UVC]] or [[Ultraviolet B|UVB]] radiation or [[Ultraviolet A|UVA]] in the presence of [[psoralen]]s. It shows premature and abnormal [[keratinization]], and has been described as an example of [[apoptosis]].<ref>
{{cite journal
| author = Young AR
| date = June 1987
| title = The sunburn cell
| journal = [[Photodermatology]]
| volume = 4
| issue = 3
| pages = 127–134
| pmid = 3317295
}}</ref><ref>
{{cite journal
|vauthors=Sheehan JM, Young AR | date = June 2002
| title = The sunburn cell revisited: an update on mechanistic aspects
| journal = [[Photochemical and Photobiological Sciences]]
| volume = 1
| issue = 6
| pages = 365–377
| doi = 10.1039/b108291d
| pmid = 12856704
| s2cid = 21184034
}}</ref>
==Aging==
With age, tissue [[homeostasis]] declines partly because [[stem cell|stem/progenitor cells]] fail to self-renew or [[cellular differentiation|differentiate]]. [[DNA damage (naturally occurring)|DNA damage]] caused by exposure of stem/progenitor cells to [[reactive oxygen species]] (ROS) may play a key role in [[epidermis|epidermal stem cell]] aging. Mitochondrial superoxide dismutase ([[SOD2]]) ordinarily protects against ROS. Loss of SOD2 in mouse epidermal cells was observed to cause cellular [[senescence]] that irreversibly arrested proliferation in a fraction of keratinocytes.<ref name="pmid26240345">{{cite journal |vauthors=Velarde MC, Demaria M, Melov S, Campisi J |title=Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=112 |issue=33 |pages=10407–12 |date=August 2015 |pmid=26240345 |pmc=4547253 |doi=10.1073/pnas.1505675112 |bibcode=2015PNAS..11210407V |doi-access=free }}</ref> In older mice, SOD2 deficiency delayed [[wound]] closure and reduced epidermal thickness.<ref name="pmid26240345" />
==Civatte body==
[[File:Civatte body.jpg|thumb|Civatte body]]
A Civatte body (named after the French dermatologist Achille Civatte, 1877–1956)<ref>{{cite book |last1=Crissey |first1=John Thorne |last2=Parish |first2=Lawrence C. |last3=Holubar |first3=Karl |title=Historical Atlas of Dermatology and Dermatologists |date=2002 |publisher=CRC Press |location=Boca Raton, FL |isbn=1-84214-100-7 |page=147}}</ref> is a damaged basal keratinocyte that has undergone [[apoptosis]], and consist largely of keratin intermediate filaments, and are almost invariably covered with [[immunoglobulin]]s, mainly IgM.<ref name="SeemaPranay2013">{{cite journal|last1=Seema|first1=Chhabra|last2=Pranay|first2=Tanwar|last3=Kumar|first3=AroraSandeep|title=Civatte bodies: A diagnostic clue|journal=Indian Journal of Dermatology|volume=58|issue=4|year=2013|page=327|issn=0019-5154|doi=10.4103/0019-5154.113974|pmid=23919028|pmc=3726905 |doi-access=free }}</ref> Civatte bodies are characteristically found in skin lesions of various [[dermatosis|dermatoses]], particularly [[lichen planus]] and [[discoid lupus erythematosus]].<ref name="SeemaPranay2013"/> They may also be found in [[graft-versus-host disease]], [[adverse drug reaction]]s, inflammatory [[keratosis]] (such as lichenoid [[actinic keratosis]] and [[lichen planus]]-like keratosis), [[erythema multiforme]], [[bullous pemphigoid]], [[eczema]], [[lichen planopilaris]], [[febrile neutrophilic dermatosis]], [[toxic epidermal necrolysis]], [[herpes simplex]] and [[varicella zoster]] lesions, [[dermatitis herpetiformis]], [[porphyria cutanea tarda]], [[sarcoidosis]], [[subcorneal pustular dermatosis]], [[transient acantholytic dermatosis]] and [[epidermolytic hyperkeratosis]].<ref name="SeemaPranay2013"/>
== See also ==
* [[epidermis (skin)|Epidermis]]
* [[Skin]]
* [[Corneocyte]]
* [[Keratin]]
* [[HaCaT]]
*[[List of human cell types derived from the germ layers]]
*[[Epidermidibacterium keratini]]
*[[List of distinct cell types in the adult human body]]
== References ==
{{Reflist|30em}}
==External links==
{{Commons category|Keratinocytes}}
* {{cite journal |vauthors=Tang L, Wu JJ, Ma Q, etal |title=Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization |journal=The British Journal of Dermatology |volume=163 |issue=1 |pages=38–47 |date=July 2010 |pmid=20222924 |doi=10.1111/j.1365-2133.2010.09748.x|s2cid=2387064 }}
{{Skin Layers and Appendages}}
[[Category:Skin anatomy]]
[[Category:Sequestering cells]]
[[Category:Human cells]]' |
Unified diff of changes made by edit (edit_diff ) | '@@ -3,5 +3,5 @@
[[File:Micrograph of keratinocytes, basal cells and melanocytes in the epidermis.jpg|thumb|Micrograph of keratinocytes, [[Stratum basale|basal cells]] and [[melanocyte]]s in the epidermis]][[File:Proliferative response induced by a tumor promoter in the epidermis of a wild-type mouse - image.pbio.v11.i07.g001.png|thumb|Keratinocytes (stained green) in the skin of a mouse]]
-'''Keratinocytes''' are the primary type of [[Cell (biology)|cell]] found in the [[epidermis (skin)|epidermis]], the outermost layer of the [[skin]]. In humans, they constitute 90% of epidermal skin cells.<ref name="Rooks">{{cite book| author1 = McGrath JA| author2 = Eady RAJ| author3 = Pope FM.| editor1 = Burns T| editor2 = Breathnach S| editor3 = Cox N| editor4 = Griffiths C.| year = 2004| title = Rook's Textbook of Dermatology| edition = 7th| publisher = Blackwell Publishing| isbn = 978-0-632-06429-8| doi = 10.1002/9780470750520.ch3| chapter = Anatomy and Organization of Human Skin| page = 4190| chapter-url = http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| access-date = 2010-06-01| archive-date = 2020-05-20| archive-url = https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| url-status = dead}}</ref> Basal cells in the [[stratum basale|basal layer (''stratum basale'')]] of the skin are sometimes referred to as '''basal keratinocytes'''.<ref name="Andrews">{{cite book| vauthors = James W, Berger T, Elston D| date = December 2005| title = Andrews' Diseases of the Skin: Clinical Dermatology| edition = 10th| publisher = Saunders| isbn = 978-0-7216-2921-6| pages = 5–6| url = http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| access-date = 2010-06-01| archive-url = https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| archive-date = 2010-10-11| url-status = dead}}</ref>
+'''Keratinocytes''' are the primary type of sigma [[Cell (biology)|cell]] found in the [[epidermis (skin)|epidermis]], the outermost layer of the [[skin]]. In humans, they constitute 90% of epidermal skin cells.<ref name="Rooks">{{cite book| author1 = McGrath JA| author2 = Eady RAJ| author3 = Pope FM.| editor1 = Burns T| editor2 = Breathnach S| editor3 = Cox N| editor4 = Griffiths C.| year = 2004| title = Rook's Textbook of Dermatology| edition = 7th| publisher = Blackwell Publishing| isbn = 978-0-632-06429-8| doi = 10.1002/9780470750520.ch3| chapter = Anatomy and Organization of Human Skin| page = 4190| chapter-url = http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| access-date = 2010-06-01| archive-date = 2020-05-20| archive-url = https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| url-status = dead}}</ref> Basal cells in the [[stratum basale|basal layer (''stratum basale'')]] of the skin are sometimes referred to as '''basal keratinocytes'''.<ref name="Andrews">{{cite book| vauthors = James W, Berger T, Elston D| date = December 2005| title = Andrews' Diseases of the Skin: Clinical Dermatology| edition = 10th| publisher = Saunders| isbn = 978-0-7216-2921-6| pages = 5–6| url = http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| access-date = 2010-06-01| archive-url = https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| archive-date = 2010-10-11| url-status = dead}}</ref>
Keratinocytes form a barrier against environmental damage by [[heat]], [[UV radiation]], [[Dehydration|water loss]], [[pathogenic]] [[bacteria]], [[fungi]], [[parasite]]s, and [[virus]]es.
A number of structural [[protein]]s, [[enzyme]]s, [[lipid]]s, and [[antimicrobial peptide]]s contribute to maintain the important barrier function of the skin.
' |
New page size (new_size ) | 25707 |
Old page size (old_size ) | 25701 |
Size change in edit (edit_delta ) | 6 |
Lines added in edit (added_lines ) | [
0 => ''''Keratinocytes''' are the primary type of sigma [[Cell (biology)|cell]] found in the [[epidermis (skin)|epidermis]], the outermost layer of the [[skin]]. In humans, they constitute 90% of epidermal skin cells.<ref name="Rooks">{{cite book| author1 = McGrath JA| author2 = Eady RAJ| author3 = Pope FM.| editor1 = Burns T| editor2 = Breathnach S| editor3 = Cox N| editor4 = Griffiths C.| year = 2004| title = Rook's Textbook of Dermatology| edition = 7th| publisher = Blackwell Publishing| isbn = 978-0-632-06429-8| doi = 10.1002/9780470750520.ch3| chapter = Anatomy and Organization of Human Skin| page = 4190| chapter-url = http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| access-date = 2010-06-01| archive-date = 2020-05-20| archive-url = https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| url-status = dead}}</ref> Basal cells in the [[stratum basale|basal layer (''stratum basale'')]] of the skin are sometimes referred to as '''basal keratinocytes'''.<ref name="Andrews">{{cite book| vauthors = James W, Berger T, Elston D| date = December 2005| title = Andrews' Diseases of the Skin: Clinical Dermatology| edition = 10th| publisher = Saunders| isbn = 978-0-7216-2921-6| pages = 5–6| url = http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| access-date = 2010-06-01| archive-url = https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| archive-date = 2010-10-11| url-status = dead}}</ref>'
] |
Lines removed in edit (removed_lines ) | [
0 => ''''Keratinocytes''' are the primary type of [[Cell (biology)|cell]] found in the [[epidermis (skin)|epidermis]], the outermost layer of the [[skin]]. In humans, they constitute 90% of epidermal skin cells.<ref name="Rooks">{{cite book| author1 = McGrath JA| author2 = Eady RAJ| author3 = Pope FM.| editor1 = Burns T| editor2 = Breathnach S| editor3 = Cox N| editor4 = Griffiths C.| year = 2004| title = Rook's Textbook of Dermatology| edition = 7th| publisher = Blackwell Publishing| isbn = 978-0-632-06429-8| doi = 10.1002/9780470750520.ch3| chapter = Anatomy and Organization of Human Skin| page = 4190| chapter-url = http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| access-date = 2010-06-01| archive-date = 2020-05-20| archive-url = https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY| url-status = dead}}</ref> Basal cells in the [[stratum basale|basal layer (''stratum basale'')]] of the skin are sometimes referred to as '''basal keratinocytes'''.<ref name="Andrews">{{cite book| vauthors = James W, Berger T, Elston D| date = December 2005| title = Andrews' Diseases of the Skin: Clinical Dermatology| edition = 10th| publisher = Saunders| isbn = 978-0-7216-2921-6| pages = 5–6| url = http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| access-date = 2010-06-01| archive-url = https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description| archive-date = 2010-10-11| url-status = dead}}</ref>'
] |
All external links added in the edit (added_links ) | [] |
All external links removed in the edit (removed_links ) | [] |
All external links in the new text (all_links ) | [
0 => 'https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY',
1 => 'https://doi.org/10.1002%2F9780470750520.ch3',
2 => 'http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY',
3 => 'https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description',
4 => 'http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description',
5 => 'https://www.ncbi.nlm.nih.gov/books/NBK10037/',
6 => 'https://archive.org/details/developmentalbio00gilb',
7 => 'https://doi.org/10.1159%2F000098163',
8 => 'https://pubmed.ncbi.nlm.nih.gov/17191035',
9 => 'https://api.semanticscholar.org/CorpusID:25671082',
10 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC145528',
11 => 'https://doi.org/10.1093%2Femboj%2F20.6.1215',
12 => 'https://pubmed.ncbi.nlm.nih.gov/11250888',
13 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861991',
14 => 'https://ui.adsabs.harvard.edu/abs/2009NYASA1170....7K',
15 => 'https://doi.org/10.1111%2Fj.1749-6632.2009.04363.x',
16 => 'https://pubmed.ncbi.nlm.nih.gov/19686098',
17 => 'https://doi.org/10.1111%2Fj.1365-2133.1972.tb01886.x',
18 => 'https://pubmed.ncbi.nlm.nih.gov/4551262',
19 => 'https://api.semanticscholar.org/CorpusID:30165907',
20 => 'https://www.worldcat.org/oclc/933586700',
21 => 'https://doi.org/10.1111%2Fj.1365-2184.1987.tb01355.x',
22 => 'https://pubmed.ncbi.nlm.nih.gov/3450396',
23 => 'https://api.semanticscholar.org/CorpusID:22475141',
24 => 'https://doi.org/10.1111%2Fj.1600-0625.2008.00786.x',
25 => 'https://pubmed.ncbi.nlm.nih.gov/19043850',
26 => 'https://api.semanticscholar.org/CorpusID:31353914',
27 => 'https://doi.org/10.1093%2Fcarcin%2F10.4.777',
28 => 'https://pubmed.ncbi.nlm.nih.gov/2702726',
29 => 'https://doi.org/10.1002%2Fjcp.1041460113',
30 => 'https://pubmed.ncbi.nlm.nih.gov/1990023',
31 => 'https://api.semanticscholar.org/CorpusID:21264605',
32 => 'https://doi.org/10.1002%2Fjcp.1041470213',
33 => 'https://pubmed.ncbi.nlm.nih.gov/1645742',
34 => 'https://api.semanticscholar.org/CorpusID:25858560',
35 => 'https://doi.org/10.1002%2Fjcp.1041430103',
36 => 'https://pubmed.ncbi.nlm.nih.gov/1690740',
37 => 'https://api.semanticscholar.org/CorpusID:8072916',
38 => 'https://doi.org/10.1007%2FBF00235738',
39 => 'https://pubmed.ncbi.nlm.nih.gov/7684087',
40 => 'https://api.semanticscholar.org/CorpusID:13063458',
41 => 'https://doi.org/10.1046%2Fj.1523-1747.1999.00698.x',
42 => 'https://pubmed.ncbi.nlm.nih.gov/10469331',
43 => 'https://doi.org/10.1016%2F0092-8674(80)90406-7',
44 => 'https://pubmed.ncbi.nlm.nih.gov/6153576',
45 => 'https://api.semanticscholar.org/CorpusID:23896865',
46 => 'https://doi.org/10.1016%2FS0021-9258(17)36685-1',
47 => 'https://pubmed.ncbi.nlm.nih.gov/7910167',
48 => 'https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.320.3485',
49 => 'https://doi.org/10.1210%2Fmend.11.13.0035',
50 => 'https://pubmed.ncbi.nlm.nih.gov/9415400',
51 => 'https://doi.org/10.1515%2FBC.2011.060',
52 => 'https://hdl.handle.net/2324%2F25561',
53 => 'https://pubmed.ncbi.nlm.nih.gov/21521076',
54 => 'https://api.semanticscholar.org/CorpusID:21148292',
55 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183491',
56 => 'https://doi.org/10.1242%2Fjcs.077552',
57 => 'https://pubmed.ncbi.nlm.nih.gov/21511732',
58 => 'https://doi.org/10.1016%2FS0092-8674(75)80001-8',
59 => 'https://pubmed.ncbi.nlm.nih.gov/1052771',
60 => 'https://api.semanticscholar.org/CorpusID:53294766',
61 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635152',
62 => 'https://doi.org/10.1101%2Fgad.1463206',
63 => 'https://pubmed.ncbi.nlm.nih.gov/17114587',
64 => 'https://doi.org/10.1016%2Fj.celrep.2018.11.039',
65 => 'https://hdl.handle.net/2066%2F200262',
66 => 'https://pubmed.ncbi.nlm.nih.gov/30566872',
67 => 'https://doi.org/10.1016%2F0092-8674(81)90169-0',
68 => 'https://pubmed.ncbi.nlm.nih.gov/6169442',
69 => 'https://api.semanticscholar.org/CorpusID:23796587',
70 => 'https://ui.adsabs.harvard.edu/abs/1977Natur.265..421R',
71 => 'https://doi.org/10.1038%2F265421a0',
72 => 'https://pubmed.ncbi.nlm.nih.gov/299924',
73 => 'https://api.semanticscholar.org/CorpusID:27427541',
74 => 'https://doi.org/10.1016%2F0092-8674(87)90179-6',
75 => 'https://pubmed.ncbi.nlm.nih.gov/3497724',
76 => 'https://api.semanticscholar.org/CorpusID:21054962',
77 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671032',
78 => 'https://doi.org/10.1111%2Fj.1751-1097.2007.00226.x',
79 => 'https://pubmed.ncbi.nlm.nih.gov/18435612',
80 => 'https://doi.org/10.1038%2Fnm1328',
81 => 'https://pubmed.ncbi.nlm.nih.gov/16288281',
82 => 'https://api.semanticscholar.org/CorpusID:52869761',
83 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1253596',
84 => 'https://ui.adsabs.harvard.edu/abs/2005PNAS..10214677C',
85 => 'https://doi.org/10.1073%2Fpnas.0507250102',
86 => 'https://pubmed.ncbi.nlm.nih.gov/16203973',
87 => 'https://ui.adsabs.harvard.edu/abs/2007Natur.447..316I',
88 => 'https://doi.org/10.1038%2Fnature05766',
89 => 'https://pubmed.ncbi.nlm.nih.gov/17507982',
90 => 'https://api.semanticscholar.org/CorpusID:887738',
91 => 'https://pubmed.ncbi.nlm.nih.gov/3317295',
92 => 'https://doi.org/10.1039%2Fb108291d',
93 => 'https://pubmed.ncbi.nlm.nih.gov/12856704',
94 => 'https://api.semanticscholar.org/CorpusID:21184034',
95 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547253',
96 => 'https://ui.adsabs.harvard.edu/abs/2015PNAS..11210407V',
97 => 'https://doi.org/10.1073%2Fpnas.1505675112',
98 => 'https://pubmed.ncbi.nlm.nih.gov/26240345',
99 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726905',
100 => 'https://doi.org/10.4103%2F0019-5154.113974',
101 => 'https://www.worldcat.org/issn/0019-5154',
102 => 'https://pubmed.ncbi.nlm.nih.gov/23919028',
103 => 'https://doi.org/10.1111%2Fj.1365-2133.2010.09748.x',
104 => 'https://pubmed.ncbi.nlm.nih.gov/20222924',
105 => 'https://api.semanticscholar.org/CorpusID:2387064'
] |
Links in the page, before the edit (old_links ) | [
0 => 'http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY',
1 => 'http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description',
2 => 'https://www.ncbi.nlm.nih.gov/books/NBK10037/',
3 => 'https://ui.adsabs.harvard.edu/abs/2009NYASA1170....7K',
4 => 'https://ui.adsabs.harvard.edu/abs/1977Natur.265..421R',
5 => 'https://ui.adsabs.harvard.edu/abs/2005PNAS..10214677C',
6 => 'https://ui.adsabs.harvard.edu/abs/2007Natur.447..316I',
7 => 'https://ui.adsabs.harvard.edu/abs/2015PNAS..11210407V',
8 => 'https://archive.org/details/developmentalbio00gilb',
9 => 'https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description',
10 => 'https://api.semanticscholar.org/CorpusID:25671082',
11 => 'https://api.semanticscholar.org/CorpusID:30165907',
12 => 'https://api.semanticscholar.org/CorpusID:22475141',
13 => 'https://api.semanticscholar.org/CorpusID:31353914',
14 => 'https://api.semanticscholar.org/CorpusID:21264605',
15 => 'https://api.semanticscholar.org/CorpusID:25858560',
16 => 'https://api.semanticscholar.org/CorpusID:8072916',
17 => 'https://api.semanticscholar.org/CorpusID:13063458',
18 => 'https://api.semanticscholar.org/CorpusID:23896865',
19 => 'https://api.semanticscholar.org/CorpusID:21148292',
20 => 'https://api.semanticscholar.org/CorpusID:53294766',
21 => 'https://api.semanticscholar.org/CorpusID:23796587',
22 => 'https://api.semanticscholar.org/CorpusID:27427541',
23 => 'https://api.semanticscholar.org/CorpusID:21054962',
24 => 'https://api.semanticscholar.org/CorpusID:52869761',
25 => 'https://api.semanticscholar.org/CorpusID:887738',
26 => 'https://api.semanticscholar.org/CorpusID:2387064',
27 => 'https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY',
28 => 'https://doi.org/10.1002%2F9780470750520.ch3',
29 => 'https://doi.org/10.1159%2F000098163',
30 => 'https://pubmed.ncbi.nlm.nih.gov/17191035',
31 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC145528',
32 => 'https://doi.org/10.1093%2Femboj%2F20.6.1215',
33 => 'https://pubmed.ncbi.nlm.nih.gov/11250888',
34 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861991',
35 => 'https://doi.org/10.1111%2Fj.1749-6632.2009.04363.x',
36 => 'https://pubmed.ncbi.nlm.nih.gov/19686098',
37 => 'https://doi.org/10.1111%2Fj.1365-2133.1972.tb01886.x',
38 => 'https://pubmed.ncbi.nlm.nih.gov/4551262',
39 => 'https://www.worldcat.org/oclc/933586700',
40 => 'https://doi.org/10.1111%2Fj.1365-2184.1987.tb01355.x',
41 => 'https://pubmed.ncbi.nlm.nih.gov/3450396',
42 => 'https://doi.org/10.1111%2Fj.1600-0625.2008.00786.x',
43 => 'https://pubmed.ncbi.nlm.nih.gov/19043850',
44 => 'https://doi.org/10.1093%2Fcarcin%2F10.4.777',
45 => 'https://pubmed.ncbi.nlm.nih.gov/2702726',
46 => 'https://doi.org/10.1002%2Fjcp.1041460113',
47 => 'https://pubmed.ncbi.nlm.nih.gov/1990023',
48 => 'https://doi.org/10.1002%2Fjcp.1041470213',
49 => 'https://pubmed.ncbi.nlm.nih.gov/1645742',
50 => 'https://doi.org/10.1002%2Fjcp.1041430103',
51 => 'https://pubmed.ncbi.nlm.nih.gov/1690740',
52 => 'https://doi.org/10.1007%2FBF00235738',
53 => 'https://pubmed.ncbi.nlm.nih.gov/7684087',
54 => 'https://doi.org/10.1046%2Fj.1523-1747.1999.00698.x',
55 => 'https://pubmed.ncbi.nlm.nih.gov/10469331',
56 => 'https://doi.org/10.1016%2F0092-8674(80)90406-7',
57 => 'https://pubmed.ncbi.nlm.nih.gov/6153576',
58 => 'https://doi.org/10.1016%2FS0021-9258(17)36685-1',
59 => 'https://pubmed.ncbi.nlm.nih.gov/7910167',
60 => 'https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.320.3485',
61 => 'https://doi.org/10.1210%2Fmend.11.13.0035',
62 => 'https://pubmed.ncbi.nlm.nih.gov/9415400',
63 => 'https://doi.org/10.1515%2FBC.2011.060',
64 => 'https://hdl.handle.net/2324%2F25561',
65 => 'https://pubmed.ncbi.nlm.nih.gov/21521076',
66 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183491',
67 => 'https://doi.org/10.1242%2Fjcs.077552',
68 => 'https://pubmed.ncbi.nlm.nih.gov/21511732',
69 => 'https://doi.org/10.1016%2FS0092-8674(75)80001-8',
70 => 'https://pubmed.ncbi.nlm.nih.gov/1052771',
71 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635152',
72 => 'https://doi.org/10.1101%2Fgad.1463206',
73 => 'https://pubmed.ncbi.nlm.nih.gov/17114587',
74 => 'https://doi.org/10.1016%2Fj.celrep.2018.11.039',
75 => 'https://pubmed.ncbi.nlm.nih.gov/30566872',
76 => 'https://doi.org/10.1016%2F0092-8674(81)90169-0',
77 => 'https://pubmed.ncbi.nlm.nih.gov/6169442',
78 => 'https://doi.org/10.1038%2F265421a0',
79 => 'https://pubmed.ncbi.nlm.nih.gov/299924',
80 => 'https://doi.org/10.1016%2F0092-8674(87)90179-6',
81 => 'https://pubmed.ncbi.nlm.nih.gov/3497724',
82 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671032',
83 => 'https://doi.org/10.1111%2Fj.1751-1097.2007.00226.x',
84 => 'https://pubmed.ncbi.nlm.nih.gov/18435612',
85 => 'https://doi.org/10.1038%2Fnm1328',
86 => 'https://pubmed.ncbi.nlm.nih.gov/16288281',
87 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1253596',
88 => 'https://doi.org/10.1073%2Fpnas.0507250102',
89 => 'https://pubmed.ncbi.nlm.nih.gov/16203973',
90 => 'https://doi.org/10.1038%2Fnature05766',
91 => 'https://pubmed.ncbi.nlm.nih.gov/17507982',
92 => 'https://pubmed.ncbi.nlm.nih.gov/3317295',
93 => 'https://doi.org/10.1039%2Fb108291d',
94 => 'https://pubmed.ncbi.nlm.nih.gov/12856704',
95 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547253',
96 => 'https://doi.org/10.1073%2Fpnas.1505675112',
97 => 'https://pubmed.ncbi.nlm.nih.gov/26240345',
98 => 'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726905',
99 => 'https://doi.org/10.4103%2F0019-5154.113974',
100 => 'https://www.worldcat.org/issn/0019-5154',
101 => 'https://pubmed.ncbi.nlm.nih.gov/23919028',
102 => 'https://doi.org/10.1111%2Fj.1365-2133.2010.09748.x',
103 => 'https://pubmed.ncbi.nlm.nih.gov/20222924',
104 => 'https://api.semanticscholar.org/CorpusID:21184034',
105 => 'https://hdl.handle.net/2066%2F200262'
] |
Parsed HTML source of the new revision (new_html ) | '<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r1097763485">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}</style><table class="box-Lead_too_short plainlinks metadata ambox ambox-content ambox-lead_too_short" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/40px-Wiki_letter_w.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/60px-Wiki_letter_w.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/80px-Wiki_letter_w.svg.png 2x" data-file-width="44" data-file-height="44" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article's <a href="/wiki/Wikipedia:Manual_of_Style/Lead_section#Length" title="Wikipedia:Manual of Style/Lead section">lead section</a> <b>may be too short to adequately <a href="/wiki/Wikipedia:Summary_style" title="Wikipedia:Summary style">summarize</a> the key points</b>.<span class="hide-when-compact"> Please consider expanding the lead to <a href="/wiki/Wikipedia:Manual_of_Style/Lead_section#Provide_an_accessible_overview" title="Wikipedia:Manual of Style/Lead section">provide an accessible overview</a> of all important aspects of the article.</span> <span class="date-container"><i>(<span class="date">November 2020</span>)</i></span></div></td></tr></tbody></table>
<div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Primary type of cell found in the epidermis</div>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Micrograph_of_keratinocytes,_basal_cells_and_melanocytes_in_the_epidermis.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Micrograph_of_keratinocytes%2C_basal_cells_and_melanocytes_in_the_epidermis.jpg/220px-Micrograph_of_keratinocytes%2C_basal_cells_and_melanocytes_in_the_epidermis.jpg" decoding="async" width="220" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Micrograph_of_keratinocytes%2C_basal_cells_and_melanocytes_in_the_epidermis.jpg/330px-Micrograph_of_keratinocytes%2C_basal_cells_and_melanocytes_in_the_epidermis.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Micrograph_of_keratinocytes%2C_basal_cells_and_melanocytes_in_the_epidermis.jpg/440px-Micrograph_of_keratinocytes%2C_basal_cells_and_melanocytes_in_the_epidermis.jpg 2x" data-file-width="708" data-file-height="595" /></a><figcaption>Micrograph of keratinocytes, <a href="/wiki/Stratum_basale" title="Stratum basale">basal cells</a> and <a href="/wiki/Melanocyte" title="Melanocyte">melanocytes</a> in the epidermis</figcaption></figure><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Proliferative_response_induced_by_a_tumor_promoter_in_the_epidermis_of_a_wild-type_mouse_-_image.pbio.v11.i07.g001.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Proliferative_response_induced_by_a_tumor_promoter_in_the_epidermis_of_a_wild-type_mouse_-_image.pbio.v11.i07.g001.png/220px-Proliferative_response_induced_by_a_tumor_promoter_in_the_epidermis_of_a_wild-type_mouse_-_image.pbio.v11.i07.g001.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Proliferative_response_induced_by_a_tumor_promoter_in_the_epidermis_of_a_wild-type_mouse_-_image.pbio.v11.i07.g001.png/330px-Proliferative_response_induced_by_a_tumor_promoter_in_the_epidermis_of_a_wild-type_mouse_-_image.pbio.v11.i07.g001.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/70/Proliferative_response_induced_by_a_tumor_promoter_in_the_epidermis_of_a_wild-type_mouse_-_image.pbio.v11.i07.g001.png/440px-Proliferative_response_induced_by_a_tumor_promoter_in_the_epidermis_of_a_wild-type_mouse_-_image.pbio.v11.i07.g001.png 2x" data-file-width="656" data-file-height="656" /></a><figcaption>Keratinocytes (stained green) in the skin of a mouse</figcaption></figure>
<p><b>Keratinocytes</b> are the primary type of sigma <a href="/wiki/Cell_(biology)" title="Cell (biology)">cell</a> found in the <a href="/wiki/Epidermis_(skin)" class="mw-redirect" title="Epidermis (skin)">epidermis</a>, the outermost layer of the <a href="/wiki/Skin" title="Skin">skin</a>. In humans, they constitute 90% of epidermal skin cells.<sup id="cite_ref-Rooks_1-0" class="reference"><a href="#cite_note-Rooks-1">[1]</a></sup> Basal cells in the <a href="/wiki/Stratum_basale" title="Stratum basale">basal layer (<i>stratum basale</i>)</a> of the skin are sometimes referred to as <b>basal keratinocytes</b>.<sup id="cite_ref-Andrews_2-0" class="reference"><a href="#cite_note-Andrews-2">[2]</a></sup>
Keratinocytes form a barrier against environmental damage by <a href="/wiki/Heat" title="Heat">heat</a>, <a href="/wiki/UV_radiation" class="mw-redirect" title="UV radiation">UV radiation</a>, <a href="/wiki/Dehydration" title="Dehydration">water loss</a>, <a href="/wiki/Pathogenic" class="mw-redirect" title="Pathogenic">pathogenic</a> <a href="/wiki/Bacteria" title="Bacteria">bacteria</a>, <a href="/wiki/Fungi" class="mw-redirect" title="Fungi">fungi</a>, <a href="/wiki/Parasite" class="mw-redirect" title="Parasite">parasites</a>, and <a href="/wiki/Virus" title="Virus">viruses</a>.
A number of structural <a href="/wiki/Protein" title="Protein">proteins</a>, <a href="/wiki/Enzyme" title="Enzyme">enzymes</a>, <a href="/wiki/Lipid" title="Lipid">lipids</a>, and <a href="/wiki/Antimicrobial_peptide" class="mw-redirect" title="Antimicrobial peptide">antimicrobial peptides</a> contribute to maintain the important barrier function of the skin.
Keratinocytes differentiate from epidermal <a href="/wiki/Stem_cells" class="mw-redirect" title="Stem cells">stem cells</a> in the lower part of the epidermis and migrate towards the surface, finally becoming <a href="/wiki/Corneocytes" class="mw-redirect" title="Corneocytes">corneocytes</a> and eventually being shed,<sup id="cite_ref-Gilbert2000_3-0" class="reference"><a href="#cite_note-Gilbert2000-3">[3]</a></sup><sup id="cite_ref-pmid17191035-2007_4-0" class="reference"><a href="#cite_note-pmid17191035-2007-4">[4]</a></sup><sup id="cite_ref-pmid11250888-2001_5-0" class="reference"><a href="#cite_note-pmid11250888-2001-5">[5]</a></sup><sup id="cite_ref-pmid19686098-2009_6-0" class="reference"><a href="#cite_note-pmid19686098-2009-6">[6]</a></sup> which happens every 40 to 56 days in humans.<sup id="cite_ref-pmid4551262-1972_7-0" class="reference"><a href="#cite_note-pmid4551262-1972-7">[7]</a></sup>
</p>
<div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div>
<ul>
<li class="toclevel-1 tocsection-1"><a href="#Function"><span class="tocnumber">1</span> <span class="toctext">Function</span></a></li>
<li class="toclevel-1 tocsection-2"><a href="#Structure"><span class="tocnumber">2</span> <span class="toctext">Structure</span></a></li>
<li class="toclevel-1 tocsection-3"><a href="#Cell_differentiation"><span class="tocnumber">3</span> <span class="toctext">Cell differentiation</span></a></li>
<li class="toclevel-1 tocsection-4"><a href="#Interaction_with_other_cells"><span class="tocnumber">4</span> <span class="toctext">Interaction with other cells</span></a></li>
<li class="toclevel-1 tocsection-5"><a href="#Role_in_wound_healing"><span class="tocnumber">5</span> <span class="toctext">Role in wound healing</span></a></li>
<li class="toclevel-1 tocsection-6"><a href="#Sunburn_cells"><span class="tocnumber">6</span> <span class="toctext">Sunburn cells</span></a></li>
<li class="toclevel-1 tocsection-7"><a href="#Aging"><span class="tocnumber">7</span> <span class="toctext">Aging</span></a></li>
<li class="toclevel-1 tocsection-8"><a href="#Civatte_body"><span class="tocnumber">8</span> <span class="toctext">Civatte body</span></a></li>
<li class="toclevel-1 tocsection-9"><a href="#See_also"><span class="tocnumber">9</span> <span class="toctext">See also</span></a></li>
<li class="toclevel-1 tocsection-10"><a href="#References"><span class="tocnumber">10</span> <span class="toctext">References</span></a></li>
<li class="toclevel-1 tocsection-11"><a href="#External_links"><span class="tocnumber">11</span> <span class="toctext">External links</span></a></li>
</ul>
</div>
<h2><span class="mw-headline" id="Function">Function</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=1" title="Edit section: Function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p>The primary function of keratinocytes is the formation of a barrier against environmental damage by heat, UV radiation, dehydration, pathogenic bacteria, fungi, parasites, and viruses.
</p><p>Pathogens invading the upper layers of the epidermis can cause keratinocytes to produce <a href="/wiki/Proinflammatory" class="mw-redirect" title="Proinflammatory">proinflammatory</a> mediators, particularly <a href="/wiki/Chemokine" title="Chemokine">chemokines</a> such as <a href="/wiki/CXCL10" title="CXCL10">CXCL10</a> and <a href="/wiki/CCL2" title="CCL2">CCL2</a> (MCP-1) which attract <a href="/wiki/Monocyte" title="Monocyte">monocytes</a>, <a href="/wiki/Natural_killer_cell" title="Natural killer cell">natural killer cells</a>, <a href="/wiki/T-lymphocyte" class="mw-redirect" title="T-lymphocyte">T-lymphocytes</a>, and <a href="/wiki/Dendritic_cell" title="Dendritic cell">dendritic cells</a> to the site of pathogen invasion.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8">[8]</a></sup>
</p>
<h2><span class="mw-headline" id="Structure">Structure</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=2" title="Edit section: Structure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p>A number of <a href="/wiki/Structural_protein" class="mw-redirect" title="Structural protein">structural proteins</a> (<a href="/wiki/Filaggrin" title="Filaggrin">filaggrin</a>, <a href="/wiki/Keratin" title="Keratin">keratin</a>), enzymes (e.g. <a href="/wiki/Protease" title="Protease">proteases</a>), lipids, and antimicrobial peptides (<a href="/wiki/Defensin" title="Defensin">defensins</a>) contribute to maintain the important barrier function of the skin. Keratinization is part of the physical barrier formation (<a href="/wiki/Cornification" class="mw-redirect" title="Cornification">cornification</a>), in which the keratinocytes produce more and more keratin and undergo terminal differentiation. The fully cornified keratinocytes that form the outermost layer are constantly shed off and replaced by new cells.<sup id="cite_ref-Gilbert2000_3-1" class="reference"><a href="#cite_note-Gilbert2000-3">[3]</a></sup>
</p>
<h2><span class="mw-headline" id="Cell_differentiation">Cell differentiation</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=3" title="Edit section: Cell differentiation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p>Epidermal stem cells reside in the lower part of the epidermis (stratum basale) and are attached to the basement membrane through <a href="/wiki/Hemidesmosome" title="Hemidesmosome">hemidesmosomes</a>. Epidermal stem cells divide in a random manner yielding either more stem cells or transit amplifying cells.<sup id="cite_ref-pmid17191035-2007_4-1" class="reference"><a href="#cite_note-pmid17191035-2007-4">[4]</a></sup> Some of the transit amplifying cells continue to proliferate then commit to <a href="/wiki/Cell_differentiation" class="mw-redirect" title="Cell differentiation">differentiate</a> and migrate towards the surface of the epidermis. Those <a href="/wiki/Stem_cells" class="mw-redirect" title="Stem cells">stem cells</a> and their differentiated progeny are organized into columns named epidermal proliferation units.<sup id="cite_ref-pmid11250888-2001_5-1" class="reference"><a href="#cite_note-pmid11250888-2001-5">[5]</a></sup>
</p><p>During this differentiation process, keratinocytes permanently withdraw from the <a href="/wiki/Cell_cycle" title="Cell cycle">cell cycle</a>, initiate expression of epidermal differentiation markers, and move suprabasally as they become part of the <a href="/wiki/Stratum_spinosum" title="Stratum spinosum">stratum spinosum</a>, <a href="/wiki/Stratum_granulosum" title="Stratum granulosum">stratum granulosum</a>, and eventually <a href="/wiki/Corneocyte" title="Corneocyte">corneocytes</a> in the <a href="/wiki/Stratum_corneum" title="Stratum corneum">stratum corneum</a>.
</p><p>Corneocytes are keratinocytes that have completed their differentiation program and have lost their <a href="/wiki/Cell_nucleus" title="Cell nucleus">nucleus</a> and <a href="/wiki/Cytoplasm" title="Cytoplasm">cytoplasmic</a> <a href="/wiki/Organelles" class="mw-redirect" title="Organelles">organelles</a>.<sup id="cite_ref-pmid19686098-2009_6-1" class="reference"><a href="#cite_note-pmid19686098-2009-6">[6]</a></sup> Corneocytes will eventually be shed off through <a href="/wiki/Desquamation" title="Desquamation">desquamation</a> as new ones come in.
</p><p>At each stage of differentiation, keratinocytes express specific <a href="/wiki/Keratins" class="mw-redirect" title="Keratins">keratins</a>, such as <a href="/wiki/Keratin_1" title="Keratin 1">keratin 1</a>, <a href="/wiki/Keratin_5" title="Keratin 5">keratin 5</a>, <a href="/wiki/Keratin_10" title="Keratin 10">keratin 10</a>, and <a href="/wiki/Keratin_14" title="Keratin 14">keratin 14</a>, but also other markers such as <a href="/wiki/Involucrin" title="Involucrin">involucrin</a>, <a href="/wiki/Loricrin" title="Loricrin">loricrin</a>, <a href="/wiki/Transglutaminase" title="Transglutaminase">transglutaminase</a>, filaggrin, and <a href="/wiki/Caspase_14" title="Caspase 14">caspase 14</a>.
</p><p>In humans, it is estimated that keratinocytes <a href="/wiki/Cell_turnover" class="mw-redirect" title="Cell turnover">turn over</a> from stem cells to desquamation every 40–56 days,<sup id="cite_ref-pmid4551262-1972_7-1" class="reference"><a href="#cite_note-pmid4551262-1972-7">[7]</a></sup> whereas in <a href="/wiki/Mice" class="mw-redirect" title="Mice">mice</a> the estimated <a href="/wiki/Turnover_time" class="mw-redirect" title="Turnover time">turnover time</a> is 8–10 days.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9">[9]</a></sup>
</p><p>Factors promoting keratinocyte differentiation are:
</p>
<ul><li>A <a href="/wiki/Calcium" title="Calcium">calcium</a> gradient, with the lowest concentration in the stratum basale and increasing concentrations until the outer stratum granulosum, where it reaches its maximum. Calcium concentration in the stratum corneum is very high in part because those relatively dry cells are not able to dissolve the ions.<sup id="cite_ref-Proksch_10-0" class="reference"><a href="#cite_note-Proksch-10">[10]</a></sup> Those elevations of <a href="/wiki/Extracellular" class="mw-redirect" title="Extracellular">extracellular</a> calcium concentrations induces an increase in <a href="/wiki/Intracellular" class="mw-redirect" title="Intracellular">intracellular</a> free calcium concentrations in keratinocytes.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11">[11]</a></sup> Part of that intracellular calcium increase comes from calcium released from intracellular stores<sup id="cite_ref-12" class="reference"><a href="#cite_note-12">[12]</a></sup> and another part comes from transmembrane calcium influx,<sup id="cite_ref-13" class="reference"><a href="#cite_note-13">[13]</a></sup> through both calcium-sensitive <a href="/wiki/Chloride_channels" class="mw-redirect" title="Chloride channels">chloride channels</a><sup id="cite_ref-14" class="reference"><a href="#cite_note-14">[14]</a></sup> and voltage-independent cation channels permeable to calcium.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15">[15]</a></sup> Moreover, it has been suggested that an extracellular calcium-sensing <a href="/wiki/Cell_surface_receptor" title="Cell surface receptor">receptor</a> (CaSR) also contributes to the rise in intracellular calcium concentration.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16">[16]</a></sup></li>
<li><a href="/wiki/Vitamin_D3" class="mw-redirect" title="Vitamin D3">Vitamin D<sub>3</sub></a> (cholecalciferol) regulates keratinocyte <a href="/wiki/Cell_proliferation" title="Cell proliferation">proliferation</a> and differentiation mostly by modulating calcium concentrations and regulating the expression of <a href="/wiki/Genes" class="mw-redirect" title="Genes">genes</a> involved in keratinocyte differentiation.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17">[17]</a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18">[18]</a></sup> Keratinocytes are the only cells in the body with the entire vitamin D metabolic pathway from vitamin D production to <a href="/wiki/Catabolism" title="Catabolism">catabolism</a> and <a href="/wiki/Vitamin_D_receptor" title="Vitamin D receptor">vitamin D receptor</a> expression.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19">[19]</a></sup></li>
<li><a href="/wiki/Cathepsin_E" title="Cathepsin E">Cathepsin E</a>.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20">[20]</a></sup></li>
<li>TALE <a href="/wiki/Homeodomain" class="mw-redirect" title="Homeodomain">homeodomain</a> <a href="/wiki/Transcription_factors" class="mw-redirect" title="Transcription factors">transcription factors</a>.<sup id="cite_ref-21" class="reference"><a href="#cite_note-21">[21]</a></sup></li>
<li><a href="/wiki/Hydrocortisone" title="Hydrocortisone">Hydrocortisone</a>.<sup id="cite_ref-cortisone_22-0" class="reference"><a href="#cite_note-cortisone-22">[22]</a></sup></li></ul>
<p>Since keratinocyte differentiation inhibits keratinocyte proliferation, factors that promote keratinocyte proliferation should be considered as preventing differentiation. These factors include:
</p>
<ul><li>The <a href="/wiki/Transcription_factor" title="Transcription factor">transcription factor</a> p63, which prevents epidermal stem cells from differentiating into keratinocytes.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23">[23]</a></sup> Mutations in the p63 DNA-binding domain are associated with ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome. The transcriptome of p63 mutant keratinocytes deviated from the normal epidermal cell identity. <sup id="cite_ref-PMID30566872_24-0" class="reference"><a href="#cite_note-PMID30566872-24">[24]</a></sup></li>
<li><a href="/wiki/Vitamin_A" title="Vitamin A">Vitamin A</a> and its analogues.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25">[25]</a></sup></li>
<li><a href="/wiki/Epidermal_growth_factor" title="Epidermal growth factor">Epidermal growth factor</a>.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26">[26]</a></sup></li>
<li><a href="/wiki/TGF_alpha" title="TGF alpha">Transforming growth factor alpha</a>.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27">[27]</a></sup></li>
<li><a href="/wiki/Cholera_toxin" title="Cholera toxin">Cholera toxin</a>.<sup id="cite_ref-cortisone_22-1" class="reference"><a href="#cite_note-cortisone-22">[22]</a></sup></li></ul>
<h2><span class="mw-headline" id="Interaction_with_other_cells">Interaction with other cells</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=4" title="Edit section: Interaction with other cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p>Within the epidermis keratinocytes are associated with other cell types such as <a href="/wiki/Melanocytes" class="mw-redirect" title="Melanocytes">melanocytes</a> and <a href="/wiki/Langerhans_cell" title="Langerhans cell">Langerhans cells</a>. Keratinocytes form <a href="/wiki/Tight_junction" title="Tight junction">tight junctions</a> with the nerves of the skin and hold the Langerhans cells and intra-dermal <a href="/wiki/Lymphocytes" class="mw-redirect" title="Lymphocytes">lymphocytes</a> in position within the epidermis. Keratinocytes also modulate the <a href="/wiki/Immune_system" title="Immune system">immune system</a>: apart from the above-mentioned <a href="/wiki/Antimicrobial_peptides" title="Antimicrobial peptides">antimicrobial peptides</a> and <a href="/wiki/Chemokines" class="mw-redirect" title="Chemokines">chemokines</a> they are also potent producers of anti-inflammatory mediators such as <a href="/wiki/Interleukin_10" title="Interleukin 10">IL-10</a> and <a href="/wiki/Transforming_growth_factor_(TGF)_beta" class="mw-redirect" title="Transforming growth factor (TGF) beta">TGF-β</a>. When activated, they can stimulate <a href="/wiki/Cutaneous" class="mw-redirect" title="Cutaneous">cutaneous</a> <a href="/wiki/Inflammation" title="Inflammation">inflammation</a> and Langerhans cell activation via <a href="/wiki/Tumor_necrosis_factor-alpha" class="mw-redirect" title="Tumor necrosis factor-alpha">TNFα</a> and <a href="/wiki/IL1B" class="mw-redirect" title="IL1B">IL-1β</a> secretion.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2010)">citation needed</span></a></i>]</sup>
</p><p>Keratinocytes contribute to protecting the body from <a href="/wiki/Ultraviolet" title="Ultraviolet">ultraviolet</a> radiation (UVR) by taking up <a href="/wiki/Melanosome" title="Melanosome">melanosomes</a>, vesicles containing the endogenous <a href="/wiki/Photoprotection" title="Photoprotection">photoprotectant</a> <a href="/wiki/Melanin" title="Melanin">melanin</a>, from epidermal melanocytes. Each melanocyte in the epidermis has several <a href="/wiki/Dendrite" title="Dendrite">dendrites</a> that stretch out to connect it with many keratinocytes. The melanin is then stored within keratinocytes and melanocytes in the perinuclear area as supranuclear “caps”, where it protects the <a href="/wiki/DNA" title="DNA">DNA</a> from UVR-induced <a href="/wiki/DNA_damage#DNA_damage" class="mw-redirect" title="DNA damage">damage</a>.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28">[28]</a></sup>
</p>
<h2><span class="mw-headline" id="Role_in_wound_healing">Role in wound healing</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=5" title="Edit section: Role in wound healing"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p><a href="/wiki/Wounds" class="mw-redirect" title="Wounds">Wounds</a> to the <a href="/wiki/Skin" title="Skin">skin</a> will be repaired in part by the migration of keratinocytes to fill in the gap created by the wound. The first set of keratinocytes to participate in that repair come from the bulge region of the <a href="/wiki/Hair_follicle" title="Hair follicle">hair follicle</a> and will only survive transiently. Within the healed epidermis they will be replaced by keratinocytes originating from the epidermis.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29">[29]</a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30">[30]</a></sup>
</p><p>At the opposite, epidermal keratinocytes, can contribute to <i>de novo</i> hair follicle formation during the healing of large wounds.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31">[31]</a></sup>
</p><p>Functional keratinocytes are needed for tympanic perforation healing.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32">[32]</a></sup>
</p>
<h2><span class="mw-headline" id="Sunburn_cells">Sunburn cells</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=6" title="Edit section: Sunburn cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p>A sunburn <a href="/wiki/Cell_(biology)" title="Cell (biology)">cell</a> is a keratinocyte with a <a href="/wiki/Pyknotic" class="mw-redirect" title="Pyknotic">pyknotic</a> <a href="/wiki/Cell_nucleus" title="Cell nucleus">nucleus</a> and <a href="/wiki/Eosinophilic" title="Eosinophilic">eosinophilic</a> <a href="/wiki/Cytoplasm" title="Cytoplasm">cytoplasm</a> that appears after exposure to <a href="/wiki/Ultraviolet_C" class="mw-redirect" title="Ultraviolet C">UVC</a> or <a href="/wiki/Ultraviolet_B" class="mw-redirect" title="Ultraviolet B">UVB</a> radiation or <a href="/wiki/Ultraviolet_A" class="mw-redirect" title="Ultraviolet A">UVA</a> in the presence of <a href="/wiki/Psoralen" title="Psoralen">psoralens</a>. It shows premature and abnormal <a href="/wiki/Keratinization" class="mw-redirect" title="Keratinization">keratinization</a>, and has been described as an example of <a href="/wiki/Apoptosis" title="Apoptosis">apoptosis</a>.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33">[33]</a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34">[34]</a></sup>
</p>
<h2><span class="mw-headline" id="Aging">Aging</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=7" title="Edit section: Aging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<p>With age, tissue <a href="/wiki/Homeostasis" title="Homeostasis">homeostasis</a> declines partly because <a href="/wiki/Stem_cell" title="Stem cell">stem/progenitor cells</a> fail to self-renew or <a href="/wiki/Cellular_differentiation" title="Cellular differentiation">differentiate</a>. <a href="/wiki/DNA_damage_(naturally_occurring)" title="DNA damage (naturally occurring)">DNA damage</a> caused by exposure of stem/progenitor cells to <a href="/wiki/Reactive_oxygen_species" title="Reactive oxygen species">reactive oxygen species</a> (ROS) may play a key role in <a href="/wiki/Epidermis" title="Epidermis">epidermal stem cell</a> aging. Mitochondrial superoxide dismutase (<a href="/wiki/SOD2" title="SOD2">SOD2</a>) ordinarily protects against ROS. Loss of SOD2 in mouse epidermal cells was observed to cause cellular <a href="/wiki/Senescence" title="Senescence">senescence</a> that irreversibly arrested proliferation in a fraction of keratinocytes.<sup id="cite_ref-pmid26240345_35-0" class="reference"><a href="#cite_note-pmid26240345-35">[35]</a></sup> In older mice, SOD2 deficiency delayed <a href="/wiki/Wound" title="Wound">wound</a> closure and reduced epidermal thickness.<sup id="cite_ref-pmid26240345_35-1" class="reference"><a href="#cite_note-pmid26240345-35">[35]</a></sup>
</p>
<h2><span class="mw-headline" id="Civatte_body">Civatte body</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=8" title="Edit section: Civatte body"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Civatte_body.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Civatte_body.jpg/220px-Civatte_body.jpg" decoding="async" width="220" height="206" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Civatte_body.jpg/330px-Civatte_body.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Civatte_body.jpg/440px-Civatte_body.jpg 2x" data-file-width="529" data-file-height="495" /></a><figcaption>Civatte body</figcaption></figure>
<p>A Civatte body (named after the French dermatologist Achille Civatte, 1877–1956)<sup id="cite_ref-36" class="reference"><a href="#cite_note-36">[36]</a></sup> is a damaged basal keratinocyte that has undergone <a href="/wiki/Apoptosis" title="Apoptosis">apoptosis</a>, and consist largely of keratin intermediate filaments, and are almost invariably covered with <a href="/wiki/Immunoglobulin" class="mw-redirect" title="Immunoglobulin">immunoglobulins</a>, mainly IgM.<sup id="cite_ref-SeemaPranay2013_37-0" class="reference"><a href="#cite_note-SeemaPranay2013-37">[37]</a></sup> Civatte bodies are characteristically found in skin lesions of various <a href="/wiki/Dermatosis" class="mw-redirect" title="Dermatosis">dermatoses</a>, particularly <a href="/wiki/Lichen_planus" title="Lichen planus">lichen planus</a> and <a href="/wiki/Discoid_lupus_erythematosus" title="Discoid lupus erythematosus">discoid lupus erythematosus</a>.<sup id="cite_ref-SeemaPranay2013_37-1" class="reference"><a href="#cite_note-SeemaPranay2013-37">[37]</a></sup> They may also be found in <a href="/wiki/Graft-versus-host_disease" title="Graft-versus-host disease">graft-versus-host disease</a>, <a href="/wiki/Adverse_drug_reaction" title="Adverse drug reaction">adverse drug reactions</a>, inflammatory <a href="/wiki/Keratosis" title="Keratosis">keratosis</a> (such as lichenoid <a href="/wiki/Actinic_keratosis" title="Actinic keratosis">actinic keratosis</a> and <a href="/wiki/Lichen_planus" title="Lichen planus">lichen planus</a>-like keratosis), <a href="/wiki/Erythema_multiforme" title="Erythema multiforme">erythema multiforme</a>, <a href="/wiki/Bullous_pemphigoid" title="Bullous pemphigoid">bullous pemphigoid</a>, <a href="/wiki/Eczema" class="mw-redirect" title="Eczema">eczema</a>, <a href="/wiki/Lichen_planopilaris" class="mw-redirect" title="Lichen planopilaris">lichen planopilaris</a>, <a href="/wiki/Febrile_neutrophilic_dermatosis" title="Febrile neutrophilic dermatosis">febrile neutrophilic dermatosis</a>, <a href="/wiki/Toxic_epidermal_necrolysis" title="Toxic epidermal necrolysis">toxic epidermal necrolysis</a>, <a href="/wiki/Herpes_simplex" class="mw-redirect" title="Herpes simplex">herpes simplex</a> and <a href="/wiki/Varicella_zoster" class="mw-redirect" title="Varicella zoster">varicella zoster</a> lesions, <a href="/wiki/Dermatitis_herpetiformis" title="Dermatitis herpetiformis">dermatitis herpetiformis</a>, <a href="/wiki/Porphyria_cutanea_tarda" title="Porphyria cutanea tarda">porphyria cutanea tarda</a>, <a href="/wiki/Sarcoidosis" title="Sarcoidosis">sarcoidosis</a>, <a href="/wiki/Subcorneal_pustular_dermatosis" class="mw-redirect" title="Subcorneal pustular dermatosis">subcorneal pustular dermatosis</a>, <a href="/wiki/Transient_acantholytic_dermatosis" title="Transient acantholytic dermatosis">transient acantholytic dermatosis</a> and <a href="/wiki/Epidermolytic_hyperkeratosis" title="Epidermolytic hyperkeratosis">epidermolytic hyperkeratosis</a>.<sup id="cite_ref-SeemaPranay2013_37-2" class="reference"><a href="#cite_note-SeemaPranay2013-37">[37]</a></sup>
</p>
<h2><span class="mw-headline" id="See_also">See also</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<ul><li><a href="/wiki/Epidermis_(skin)" class="mw-redirect" title="Epidermis (skin)">Epidermis</a></li>
<li><a href="/wiki/Skin" title="Skin">Skin</a></li>
<li><a href="/wiki/Corneocyte" title="Corneocyte">Corneocyte</a></li>
<li><a href="/wiki/Keratin" title="Keratin">Keratin</a></li>
<li><a href="/wiki/HaCaT" title="HaCaT">HaCaT</a></li>
<li><a href="/wiki/List_of_human_cell_types_derived_from_the_germ_layers" title="List of human cell types derived from the germ layers">List of human cell types derived from the germ layers</a></li>
<li><a href="/wiki/Epidermidibacterium_keratini" title="Epidermidibacterium keratini">Epidermidibacterium keratini</a></li>
<li><a href="/wiki/List_of_distinct_cell_types_in_the_adult_human_body" title="List of distinct cell types in the adult human body">List of distinct cell types in the adult human body</a></li></ul>
<h2><span class="mw-headline" id="References">References</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<style data-mw-deduplicate="TemplateStyles:r1217336898">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;">
<ol class="references">
<li id="cite_note-Rooks-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rooks_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1215172403">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a{background-size:contain}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a{background-size:contain}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a{background-size:contain}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#2C882D;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911F}html.skin-theme-clientpref-night .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-night .mw-parser-output .cs1-hidden-error{color:#f8a397}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-os .mw-parser-output .cs1-hidden-error{color:#f8a397}html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911F}}</style><cite id="CITEREFMcGrath_JAEady_RAJPope_FM.2004" class="citation book cs1">McGrath JA; Eady RAJ; Pope FM. (2004). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200520153108/http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY">"Anatomy and Organization of Human Skin"</a>. In Burns T; Breathnach S; Cox N; Griffiths C. (eds.). <i>Rook's Textbook of Dermatology</i> (7th ed.). Blackwell Publishing. p. 4190. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9780470750520.ch3">10.1002/9780470750520.ch3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-632-06429-8" title="Special:BookSources/978-0-632-06429-8"><bdi>978-0-632-06429-8</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www3.interscience.wiley.com/cgi-bin/summary/117905360/SUMMARY">the original</a> on 2020-05-20<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-06-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Anatomy+and+Organization+of+Human+Skin&rft.btitle=Rook%27s+Textbook+of+Dermatology&rft.pages=4190&rft.edition=7th&rft.pub=Blackwell+Publishing&rft.date=2004&rft_id=info%3Adoi%2F10.1002%2F9780470750520.ch3&rft.isbn=978-0-632-06429-8&rft.au=McGrath+JA&rft.au=Eady+RAJ&rft.au=Pope+FM.&rft_id=http%3A%2F%2Fwww3.interscience.wiley.com%2Fcgi-bin%2Fsummary%2F117905360%2FSUMMARY&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-Andrews-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-Andrews_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFJamesBergerElston2005" class="citation book cs1">James W, Berger T, Elston D (December 2005). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101011093705/http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description"><i>Andrews' Diseases of the Skin: Clinical Dermatology</i></a> (10th ed.). Saunders. pp. 5–6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-7216-2921-6" title="Special:BookSources/978-0-7216-2921-6"><bdi>978-0-7216-2921-6</bdi></a>. Archived from <a rel="nofollow" class="external text" href="http://www.elsevier.com/wps/find/bookdescription.cws_home/706939/description">the original</a> on 2010-10-11<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-06-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Andrews%27+Diseases+of+the+Skin%3A+Clinical+Dermatology&rft.pages=5-6&rft.edition=10th&rft.pub=Saunders&rft.date=2005-12&rft.isbn=978-0-7216-2921-6&rft.aulast=James&rft.aufirst=W&rft.au=Berger%2C+T&rft.au=Elston%2C+D&rft_id=http%3A%2F%2Fwww.elsevier.com%2Fwps%2Ffind%2Fbookdescription.cws_home%2F706939%2Fdescription&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-Gilbert2000-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gilbert2000_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gilbert2000_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFGilbert2000" class="citation book cs1">Gilbert, Scott F. (2000). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/books/NBK10037/">"The Epidermis and the Origin of Cutaneous Structures."</a>. <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/developmentalbio00gilb"><i>Developmental Biology</i></a></span>. Sinauer Associates. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0878932436" title="Special:BookSources/978-0878932436"><bdi>978-0878932436</bdi></a>. <q>Throughout life, the dead keratinized cells of the cornified layer are shed (humans lose about 1.5 grams of these cells each day*) and are replaced by new cells, the source of which is the mitotic cells of the Malpighian layer. Pigment cells (melanocytes) from the neural crest also reside in the Malpighian layer, where they transfer their pigment sacs (melanosomes) to the developing keratinocytes.</q></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+Epidermis+and+the+Origin+of+Cutaneous+Structures.&rft.btitle=Developmental+Biology.&rft.pub=Sinauer+Associates&rft.date=2000&rft.isbn=978-0878932436&rft.aulast=Gilbert&rft.aufirst=Scott+F.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fbooks%2FNBK10037%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-pmid17191035-2007-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid17191035-2007_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid17191035-2007_4-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFHoubenDe_PaepeRogiers2007" class="citation journal cs1">Houben E, De Paepe K, Rogiers V (2007). "A keratinocyte's course of life". <i>Skin Pharmacology and Physiology</i>. <b>20</b> (3): 122–32. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1159%2F000098163">10.1159/000098163</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17191035">17191035</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:25671082">25671082</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Skin+Pharmacology+and+Physiology&rft.atitle=A+keratinocyte%27s+course+of+life&rft.volume=20&rft.issue=3&rft.pages=122-32&rft.date=2007&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A25671082%23id-name%3DS2CID&rft_id=info%3Apmid%2F17191035&rft_id=info%3Adoi%2F10.1159%2F000098163&rft.aulast=Houben&rft.aufirst=E&rft.au=De+Paepe%2C+K&rft.au=Rogiers%2C+V&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-pmid11250888-2001-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid11250888-2001_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid11250888-2001_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFGhazizadehTaichman2001" class="citation journal cs1">Ghazizadeh S, Taichman LB (March 2001). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC145528">"Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin"</a>. <i>The EMBO Journal</i>. <b>20</b> (6): 1215–22. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Femboj%2F20.6.1215">10.1093/emboj/20.6.1215</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC145528">145528</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11250888">11250888</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+EMBO+Journal&rft.atitle=Multiple+classes+of+stem+cells+in+cutaneous+epithelium%3A+a+lineage+analysis+of+adult+mouse+skin&rft.volume=20&rft.issue=6&rft.pages=1215-22&rft.date=2001-03&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC145528%23id-name%3DPMC&rft_id=info%3Apmid%2F11250888&rft_id=info%3Adoi%2F10.1093%2Femboj%2F20.6.1215&rft.aulast=Ghazizadeh&rft.aufirst=S&rft.au=Taichman%2C+LB&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC145528&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-pmid19686098-2009-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid19686098-2009_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid19686098-2009_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFKoster_MI2009" class="citation journal cs1">Koster MI (July 2009). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861991">"Making an epidermis"</a>. <i>Annals of the New York Academy of Sciences</i>. <b>1170</b> (1): 7–10. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009NYASA1170....7K">2009NYASA1170....7K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1749-6632.2009.04363.x">10.1111/j.1749-6632.2009.04363.x</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861991">2861991</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19686098">19686098</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.atitle=Making+an+epidermis&rft.volume=1170&rft.issue=1&rft.pages=7-10&rft.date=2009-07&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2861991%23id-name%3DPMC&rft_id=info%3Apmid%2F19686098&rft_id=info%3Adoi%2F10.1111%2Fj.1749-6632.2009.04363.x&rft_id=info%3Abibcode%2F2009NYASA1170....7K&rft.au=Koster+MI&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2861991&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-pmid4551262-1972-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid4551262-1972_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid4551262-1972_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFHalprin_KM1972" class="citation journal cs1">Halprin KM (January 1972). "Epidermal "turnover time"--a re-examination". <i>The British Journal of Dermatology</i>. <b>86</b> (1): 14–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2133.1972.tb01886.x">10.1111/j.1365-2133.1972.tb01886.x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/4551262">4551262</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:30165907">30165907</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+British+Journal+of+Dermatology&rft.atitle=Epidermal+%22turnover+time%22--a+re-examination&rft.volume=86&rft.issue=1&rft.pages=14-9&rft.date=1972-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A30165907%23id-name%3DS2CID&rft_id=info%3Apmid%2F4551262&rft_id=info%3Adoi%2F10.1111%2Fj.1365-2133.1972.tb01886.x&rft.au=Halprin+KM&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFMurphy,_Kenneth_(Kenneth_M.)2017" class="citation book cs1">Murphy, Kenneth (Kenneth M.) (2017). <i>Janeway's immunobiology</i>. Weaver, Casey (Ninth ed.). New York, NY, USA. p. 112. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780815345053" title="Special:BookSources/9780815345053"><bdi>9780815345053</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/933586700">933586700</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Janeway%27s+immunobiology&rft.place=New+York%2C+NY%2C+USA&rft.pages=112&rft.edition=Ninth&rft.date=2017&rft_id=info%3Aoclcnum%2F933586700&rft.isbn=9780815345053&rft.au=Murphy%2C+Kenneth+%28Kenneth+M.%29&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></span>
</li>
<li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFPottenSaffhillMaibach1987" class="citation journal cs1">Potten CS, Saffhill R, Maibach HI (September 1987). "Measurement of the transit time for cells through the epidermis and stratum corneum of the mouse and guinea-pig". <i>Cell and Tissue Kinetics</i>. <b>20</b> (5): 461–72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2184.1987.tb01355.x">10.1111/j.1365-2184.1987.tb01355.x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/3450396">3450396</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22475141">22475141</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell+and+Tissue+Kinetics&rft.atitle=Measurement+of+the+transit+time+for+cells+through+the+epidermis+and+stratum+corneum+of+the+mouse+and+guinea-pig&rft.volume=20&rft.issue=5&rft.pages=461-72&rft.date=1987-09&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22475141%23id-name%3DS2CID&rft_id=info%3Apmid%2F3450396&rft_id=info%3Adoi%2F10.1111%2Fj.1365-2184.1987.tb01355.x&rft.aulast=Potten&rft.aufirst=CS&rft.au=Saffhill%2C+R&rft.au=Maibach%2C+HI&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-Proksch-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Proksch_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFProkschBrandnerJensen2008" class="citation journal cs1">Proksch E, Brandner JM, Jensen JM (December 2008). "The skin: an indispensable barrier". <i>Experimental Dermatology</i>. <b>17</b> (12): 1063–72. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1600-0625.2008.00786.x">10.1111/j.1600-0625.2008.00786.x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/19043850">19043850</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31353914">31353914</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Experimental+Dermatology&rft.atitle=The+skin%3A+an+indispensable+barrier&rft.volume=17&rft.issue=12&rft.pages=1063-72&rft.date=2008-12&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31353914%23id-name%3DS2CID&rft_id=info%3Apmid%2F19043850&rft_id=info%3Adoi%2F10.1111%2Fj.1600-0625.2008.00786.x&rft.aulast=Proksch&rft.aufirst=E&rft.au=Brandner%2C+JM&rft.au=Jensen%2C+JM&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFHenningsKruszewskiYuspaTucker1989" class="citation journal cs1">Hennings H, Kruszewski FH, Yuspa SH, Tucker RW (April 1989). "Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes". <i>Carcinogenesis</i>. <b>10</b> (4): 777–80. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fcarcin%2F10.4.777">10.1093/carcin/10.4.777</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/2702726">2702726</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Carcinogenesis&rft.atitle=Intracellular+calcium+alterations+in+response+to+increased+external+calcium+in+normal+and+neoplastic+keratinocytes&rft.volume=10&rft.issue=4&rft.pages=777-80&rft.date=1989-04&rft_id=info%3Adoi%2F10.1093%2Fcarcin%2F10.4.777&rft_id=info%3Apmid%2F2702726&rft.aulast=Hennings&rft.aufirst=H&rft.au=Kruszewski%2C+FH&rft.au=Yuspa%2C+SH&rft.au=Tucker%2C+RW&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFPillaiBikle1991" class="citation journal cs1">Pillai S, Bikle DD (January 1991). "Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3". <i>Journal of Cellular Physiology</i>. <b>146</b> (1): 94–100. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjcp.1041460113">10.1002/jcp.1041460113</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1990023">1990023</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21264605">21264605</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Cellular+Physiology&rft.atitle=Role+of+intracellular-free+calcium+in+the+cornified+envelope+formation+of+keratinocytes%3A+differences+in+the+mode+of+action+of+extracellular+calcium+and+1%2C25+dihydroxyvitamin+D3&rft.volume=146&rft.issue=1&rft.pages=94-100&rft.date=1991-01&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21264605%23id-name%3DS2CID&rft_id=info%3Apmid%2F1990023&rft_id=info%3Adoi%2F10.1002%2Fjcp.1041460113&rft.aulast=Pillai&rft.aufirst=S&rft.au=Bikle%2C+DD&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFReissLipseyZhou1991" class="citation journal cs1">Reiss, M; Lipsey, LR; Zhou, ZL (1991). "Extracellular calcium-dependent regulation of transmembrane calcium fluxes in murine keratinocytes". <i>Journal of Cellular Physiology</i>. <b>147</b> (2): 281–91. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjcp.1041470213">10.1002/jcp.1041470213</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1645742">1645742</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:25858560">25858560</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Cellular+Physiology&rft.atitle=Extracellular+calcium-dependent+regulation+of+transmembrane+calcium+fluxes+in+murine+keratinocytes&rft.volume=147&rft.issue=2&rft.pages=281-91&rft.date=1991&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A25858560%23id-name%3DS2CID&rft_id=info%3Apmid%2F1645742&rft_id=info%3Adoi%2F10.1002%2Fjcp.1041470213&rft.aulast=Reiss&rft.aufirst=M&rft.au=Lipsey%2C+LR&rft.au=Zhou%2C+ZL&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFMauroPapponeIsseroff1990" class="citation journal cs1">Mauro, TM; Pappone, PA; Isseroff, RR (1990). "Extracellular calcium affects the membrane currents of cultured human keratinocytes". <i>Journal of Cellular Physiology</i>. <b>143</b> (1): 13–20. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjcp.1041430103">10.1002/jcp.1041430103</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1690740">1690740</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8072916">8072916</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Cellular+Physiology&rft.atitle=Extracellular+calcium+affects+the+membrane+currents+of+cultured+human+keratinocytes&rft.volume=143&rft.issue=1&rft.pages=13-20&rft.date=1990&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8072916%23id-name%3DS2CID&rft_id=info%3Apmid%2F1690740&rft_id=info%3Adoi%2F10.1002%2Fjcp.1041430103&rft.aulast=Mauro&rft.aufirst=TM&rft.au=Pappone%2C+PA&rft.au=Isseroff%2C+RR&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFMauroIsseroffLasarowPappone1993" class="citation journal cs1">Mauro, TM; Isseroff, RR; Lasarow, R; Pappone, PA (1993). "Ion channels are linked to differentiation in keratinocytes". <i>The Journal of Membrane Biology</i>. <b>132</b> (3): 201–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF00235738">10.1007/BF00235738</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/7684087">7684087</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:13063458">13063458</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Membrane+Biology&rft.atitle=Ion+channels+are+linked+to+differentiation+in+keratinocytes&rft.volume=132&rft.issue=3&rft.pages=201-9&rft.date=1993&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A13063458%23id-name%3DS2CID&rft_id=info%3Apmid%2F7684087&rft_id=info%3Adoi%2F10.1007%2FBF00235738&rft.aulast=Mauro&rft.aufirst=TM&rft.au=Isseroff%2C+RR&rft.au=Lasarow%2C+R&rft.au=Pappone%2C+PA&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFTuOdaBikle1999" class="citation journal cs1">Tu, CL; Oda, Y; Bikle, DD (1999). <a rel="nofollow" class="external text" href="https://doi.org/10.1046%2Fj.1523-1747.1999.00698.x">"Effects of a calcium receptor activator on the cellular response to calcium in human keratinocytes"</a>. <i>The Journal of Investigative Dermatology</i>. <b>113</b> (3): 340–5. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1046%2Fj.1523-1747.1999.00698.x">10.1046/j.1523-1747.1999.00698.x</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/10469331">10469331</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Investigative+Dermatology&rft.atitle=Effects+of+a+calcium+receptor+activator+on+the+cellular+response+to+calcium+in+human+keratinocytes&rft.volume=113&rft.issue=3&rft.pages=340-5&rft.date=1999&rft_id=info%3Adoi%2F10.1046%2Fj.1523-1747.1999.00698.x&rft_id=info%3Apmid%2F10469331&rft.aulast=Tu&rft.aufirst=CL&rft.au=Oda%2C+Y&rft.au=Bikle%2C+DD&rft_id=https%3A%2F%2Fdoi.org%2F10.1046%252Fj.1523-1747.1999.00698.x&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFHenningsMichaelChengSteinert1980" class="citation journal cs1">Hennings, Henry; Michael, Delores; Cheng, Christina; Steinert, Peter; Holbrook, Karen; Yuspa, Stuart H. (1980). "Calcium regulation of growth and differentiation of mouse epidermal cells in culture". <i>Cell</i>. <b>19</b> (1): 245–54. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0092-8674%2880%2990406-7">10.1016/0092-8674(80)90406-7</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6153576">6153576</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:23896865">23896865</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Calcium+regulation+of+growth+and+differentiation+of+mouse+epidermal+cells+in+culture&rft.volume=19&rft.issue=1&rft.pages=245-54&rft.date=1980&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A23896865%23id-name%3DS2CID&rft_id=info%3Apmid%2F6153576&rft_id=info%3Adoi%2F10.1016%2F0092-8674%2880%2990406-7&rft.aulast=Hennings&rft.aufirst=Henry&rft.au=Michael%2C+Delores&rft.au=Cheng%2C+Christina&rft.au=Steinert%2C+Peter&rft.au=Holbrook%2C+Karen&rft.au=Yuspa%2C+Stuart+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFSuBikleManciantiPillai1994" class="citation journal cs1">Su, MJ; Bikle, DD; Mancianti, ML; Pillai, S (1994). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0021-9258%2817%2936685-1">"1,25-Dihydroxyvitamin D3 potentiates the keratinocyte response to calcium"</a>. <i>The Journal of Biological Chemistry</i>. <b>269</b> (20): 14723–9. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0021-9258%2817%2936685-1">10.1016/S0021-9258(17)36685-1</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/7910167">7910167</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Journal+of+Biological+Chemistry&rft.atitle=1%2C25-Dihydroxyvitamin+D3+potentiates+the+keratinocyte+response+to+calcium&rft.volume=269&rft.issue=20&rft.pages=14723-9&rft.date=1994&rft_id=info%3Adoi%2F10.1016%2FS0021-9258%2817%2936685-1&rft_id=info%3Apmid%2F7910167&rft.aulast=Su&rft.aufirst=MJ&rft.au=Bikle%2C+DD&rft.au=Mancianti%2C+ML&rft.au=Pillai%2C+S&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252FS0021-9258%252817%252936685-1&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFFuLinZhangBikle1997" class="citation journal cs1">Fu, G. K.; Lin, D; Zhang, MY; Bikle, DD; Shackleton, CH; Miller, WL; Portale, AA (1997). "Cloning of Human 25-Hydroxyvitamin D-1 -Hydroxylase and Mutations Causing Vitamin D-Dependent Rickets Type 1". <i>Molecular Endocrinology</i>. <b>11</b> (13): 1961–70. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.320.3485">10.1.1.320.3485</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1210%2Fmend.11.13.0035">10.1210/mend.11.13.0035</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9415400">9415400</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Molecular+Endocrinology&rft.atitle=Cloning+of+Human+25-Hydroxyvitamin+D-1+-Hydroxylase+and+Mutations+Causing+Vitamin+D-Dependent+Rickets+Type+1&rft.volume=11&rft.issue=13&rft.pages=1961-70&rft.date=1997&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.320.3485%23id-name%3DCiteSeerX&rft_id=info%3Apmid%2F9415400&rft_id=info%3Adoi%2F10.1210%2Fmend.11.13.0035&rft.aulast=Fu&rft.aufirst=G.+K.&rft.au=Lin%2C+D&rft.au=Zhang%2C+MY&rft.au=Bikle%2C+DD&rft.au=Shackleton%2C+CH&rft.au=Miller%2C+WL&rft.au=Portale%2C+AA&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFKawakuboYasukochiOkamotoOkamoto2011" class="citation journal cs1">Kawakubo, Tomoyo; Yasukochi, Atsushi; Okamoto, Kuniaki; Okamoto, Yoshiko; Nakamura, Seiji; Yamamoto, Kenji (2011). "The role of cathepsin E in terminal differentiation of keratinocytes". <i>Biological Chemistry</i>. <b>392</b> (6): 571–85. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2FBC.2011.060">10.1515/BC.2011.060</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2324%2F25561">2324/25561</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21521076">21521076</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21148292">21148292</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biological+Chemistry&rft.atitle=The+role+of+cathepsin+E+in+terminal+differentiation+of+keratinocytes&rft.volume=392&rft.issue=6&rft.pages=571-85&rft.date=2011&rft_id=info%3Ahdl%2F2324%2F25561&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21148292%23id-name%3DS2CID&rft_id=info%3Apmid%2F21521076&rft_id=info%3Adoi%2F10.1515%2FBC.2011.060&rft.aulast=Kawakubo&rft.aufirst=Tomoyo&rft.au=Yasukochi%2C+Atsushi&rft.au=Okamoto%2C+Kuniaki&rft.au=Okamoto%2C+Yoshiko&rft.au=Nakamura%2C+Seiji&rft.au=Yamamoto%2C+Kenji&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFJacksonBrownAvilionO'Shaughnessy2011" class="citation journal cs1">Jackson, B.; Brown, S. J.; Avilion, A. A.; O'Shaughnessy, R. F. L.; Sully, K.; Akinduro, O.; Murphy, M.; Cleary, M. L.; Byrne, C. (2011). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183491">"TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier"</a>. <i>Journal of Cell Science</i>. <b>124</b> (10): 1681–1690. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1242%2Fjcs.077552">10.1242/jcs.077552</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3183491">3183491</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/21511732">21511732</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Cell+Science&rft.atitle=TALE+homeodomain+proteins+regulate+site-specific+terminal+differentiation%2C+LCE+genes+and+epidermal+barrier&rft.volume=124&rft.issue=10&rft.pages=1681-1690&rft.date=2011&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3183491%23id-name%3DPMC&rft_id=info%3Apmid%2F21511732&rft_id=info%3Adoi%2F10.1242%2Fjcs.077552&rft.aulast=Jackson&rft.aufirst=B.&rft.au=Brown%2C+S.+J.&rft.au=Avilion%2C+A.+A.&rft.au=O%27Shaughnessy%2C+R.+F.+L.&rft.au=Sully%2C+K.&rft.au=Akinduro%2C+O.&rft.au=Murphy%2C+M.&rft.au=Cleary%2C+M.+L.&rft.au=Byrne%2C+C.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3183491&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-cortisone-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-cortisone_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cortisone_22-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFRheinwaldGreen1975" class="citation journal cs1">Rheinwald, JG; Green, H (1975). "Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells". <i>Cell</i>. <b>6</b> (3): 331–43. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0092-8674%2875%2980001-8">10.1016/S0092-8674(75)80001-8</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/1052771">1052771</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53294766">53294766</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Serial+cultivation+of+strains+of+human+epidermal+keratinocytes%3A+The+formation+of+keratinizing+colonies+from+single+cells&rft.volume=6&rft.issue=3&rft.pages=331-43&rft.date=1975&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53294766%23id-name%3DS2CID&rft_id=info%3Apmid%2F1052771&rft_id=info%3Adoi%2F10.1016%2FS0092-8674%2875%2980001-8&rft.aulast=Rheinwald&rft.aufirst=JG&rft.au=Green%2C+H&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFTruongKretzRidkyKimmel2006" class="citation journal cs1">Truong, AB; Kretz, M; Ridky, TW; Kimmel, R; Khavari, PA (2006). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635152">"P63 regulates proliferation and differentiation of developmentally mature keratinocytes"</a>. <i>Genes & Development</i>. <b>20</b> (22): 3185–97. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1101%2Fgad.1463206">10.1101/gad.1463206</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635152">1635152</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17114587">17114587</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Genes+%26+Development&rft.atitle=P63+regulates+proliferation+and+differentiation+of+developmentally+mature+keratinocytes&rft.volume=20&rft.issue=22&rft.pages=3185-97&rft.date=2006&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1635152%23id-name%3DPMC&rft_id=info%3Apmid%2F17114587&rft_id=info%3Adoi%2F10.1101%2Fgad.1463206&rft.aulast=Truong&rft.aufirst=AB&rft.au=Kretz%2C+M&rft.au=Ridky%2C+TW&rft.au=Kimmel%2C+R&rft.au=Khavari%2C+PA&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1635152&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-PMID30566872-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-PMID30566872_24-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFQuTanisSmitsKouwenhoven2018" class="citation journal cs1">Qu J, Tanis SE, Smits JP, Kouwenhoven EN, Oti M, van den Bogaard EH, Logie C, Stunnenberg HG, van Bokhoven H, Mulder KW, Zhou H (December 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.celrep.2018.11.039">"Mutant p63 affects epidermal cell identity through rewiring the enhancer landscape"</a>. <i>Cell Reports</i>. <b>25</b> (12): 3490–503. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.celrep.2018.11.039">10.1016/j.celrep.2018.11.039</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2066%2F200262">2066/200262</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30566872">30566872</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell+Reports&rft.atitle=Mutant+p63+affects+epidermal+cell+identity+through+rewiring+the+enhancer+landscape&rft.volume=25&rft.issue=12&rft.pages=3490-503&rft.date=2018-12&rft_id=info%3Ahdl%2F2066%2F200262&rft_id=info%3Apmid%2F30566872&rft_id=info%3Adoi%2F10.1016%2Fj.celrep.2018.11.039&rft.aulast=Qu&rft.aufirst=J&rft.au=Tanis%2C+SE&rft.au=Smits%2C+JP&rft.au=Kouwenhoven%2C+EN&rft.au=Oti%2C+M&rft.au=van+den+Bogaard%2C+EH&rft.au=Logie%2C+C&rft.au=Stunnenberg%2C+HG&rft.au=van+Bokhoven%2C+H&rft.au=Mulder%2C+KW&rft.au=Zhou%2C+H&rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.celrep.2018.11.039&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFFuchsGreen1981" class="citation journal cs1">Fuchs, E; Green, H (1981). "Regulation of terminal differentiation of cultured human keratinocytes by vitamin A". <i>Cell</i>. <b>25</b> (3): 617–25. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0092-8674%2881%2990169-0">10.1016/0092-8674(81)90169-0</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/6169442">6169442</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:23796587">23796587</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Regulation+of+terminal+differentiation+of+cultured+human+keratinocytes+by+vitamin+A&rft.volume=25&rft.issue=3&rft.pages=617-25&rft.date=1981&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A23796587%23id-name%3DS2CID&rft_id=info%3Apmid%2F6169442&rft_id=info%3Adoi%2F10.1016%2F0092-8674%2881%2990169-0&rft.aulast=Fuchs&rft.aufirst=E&rft.au=Green%2C+H&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFRheinwaldGreen1977" class="citation journal cs1">Rheinwald, JG; Green, H (1977). "Epidermal growth factor and the multiplication of cultured human epidermal keratinocytes". <i>Nature</i>. <b>265</b> (5593): 421–4. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1977Natur.265..421R">1977Natur.265..421R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2F265421a0">10.1038/265421a0</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/299924">299924</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27427541">27427541</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Epidermal+growth+factor+and+the+multiplication+of+cultured+human+epidermal+keratinocytes&rft.volume=265&rft.issue=5593&rft.pages=421-4&rft.date=1977&rft_id=info%3Adoi%2F10.1038%2F265421a0&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27427541%23id-name%3DS2CID&rft_id=info%3Apmid%2F299924&rft_id=info%3Abibcode%2F1977Natur.265..421R&rft.aulast=Rheinwald&rft.aufirst=JG&rft.au=Green%2C+H&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFBarrandonGreen1987" class="citation journal cs1">Barrandon, Y; Green, H (1987). "Cell migration is essential for sustained growth of keratinocyte colonies: The roles of transforming growth factor-alpha and epidermal growth factor". <i>Cell</i>. <b>50</b> (7): 1131–7. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0092-8674%2887%2990179-6">10.1016/0092-8674(87)90179-6</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/3497724">3497724</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21054962">21054962</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Cell&rft.atitle=Cell+migration+is+essential+for+sustained+growth+of+keratinocyte+colonies%3A+The+roles+of+transforming+growth+factor-alpha+and+epidermal+growth+factor&rft.volume=50&rft.issue=7&rft.pages=1131-7&rft.date=1987&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21054962%23id-name%3DS2CID&rft_id=info%3Apmid%2F3497724&rft_id=info%3Adoi%2F10.1016%2F0092-8674%2887%2990179-6&rft.aulast=Barrandon&rft.aufirst=Y&rft.au=Green%2C+H&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFBrenner_MHearing_VJ.2008" class="citation journal cs1">Brenner M; Hearing VJ. (May–June 2008). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671032">"The Protective Role of Melanin Against UV Damage in Human Skin"</a>. <i><a href="/wiki/Photochemistry_and_Photobiology" title="Photochemistry and Photobiology">Photochemistry and Photobiology</a></i>. <b>84</b> (3): 539–549. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1751-1097.2007.00226.x">10.1111/j.1751-1097.2007.00226.x</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671032">2671032</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18435612">18435612</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Photochemistry+and+Photobiology&rft.atitle=The+Protective+Role+of+Melanin+Against+UV+Damage+in+Human+Skin&rft.volume=84&rft.issue=3&rft.pages=539-549&rft.date=2008-05%2F2008-06&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2671032%23id-name%3DPMC&rft_id=info%3Apmid%2F18435612&rft_id=info%3Adoi%2F10.1111%2Fj.1751-1097.2007.00226.x&rft.au=Brenner+M&rft.au=Hearing+VJ.&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC2671032&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFItoLiuYangNguyen2005" class="citation journal cs1">Ito, M; Liu, Y; Yang, Z; Nguyen, J; Liang, F; Morris, RJ; Cotsarelis, G (2005). "Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis". <i>Nature Medicine</i>. <b>11</b> (12): 1351–4. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnm1328">10.1038/nm1328</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16288281">16288281</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:52869761">52869761</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature+Medicine&rft.atitle=Stem+cells+in+the+hair+follicle+bulge+contribute+to+wound+repair+but+not+to+homeostasis+of+the+epidermis&rft.volume=11&rft.issue=12&rft.pages=1351-4&rft.date=2005&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A52869761%23id-name%3DS2CID&rft_id=info%3Apmid%2F16288281&rft_id=info%3Adoi%2F10.1038%2Fnm1328&rft.aulast=Ito&rft.aufirst=M&rft.au=Liu%2C+Y&rft.au=Yang%2C+Z&rft.au=Nguyen%2C+J&rft.au=Liang%2C+F&rft.au=Morris%2C+RJ&rft.au=Cotsarelis%2C+G&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFClaudinotNicolasOshimaRochat2005" class="citation journal cs1">Claudinot, S; Nicolas, M; Oshima, H; Rochat, A; Barrandon, Y (2005). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1253596">"Long-term renewal of hair follicles from clonogenic multipotent stem cells"</a>. <i>Proceedings of the National Academy of Sciences of the United States of America</i>. <b>102</b> (41): 14677–82. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005PNAS..10214677C">2005PNAS..10214677C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.0507250102">10.1073/pnas.0507250102</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1253596">1253596</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16203973">16203973</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+of+the+United+States+of+America&rft.atitle=Long-term+renewal+of+hair+follicles+from+clonogenic+multipotent+stem+cells&rft.volume=102&rft.issue=41&rft.pages=14677-82&rft.date=2005&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1253596%23id-name%3DPMC&rft_id=info%3Apmid%2F16203973&rft_id=info%3Adoi%2F10.1073%2Fpnas.0507250102&rft_id=info%3Abibcode%2F2005PNAS..10214677C&rft.aulast=Claudinot&rft.aufirst=S&rft.au=Nicolas%2C+M&rft.au=Oshima%2C+H&rft.au=Rochat%2C+A&rft.au=Barrandon%2C+Y&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1253596&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFItoYangAndlCui2007" class="citation journal cs1">Ito, M; Yang, Z; Andl, T; Cui, C; Kim, N; Millar, SE; Cotsarelis, G (2007). "Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding". <i>Nature</i>. <b>447</b> (7142): 316–20. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007Natur.447..316I">2007Natur.447..316I</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnature05766">10.1038/nature05766</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/17507982">17507982</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:887738">887738</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nature&rft.atitle=Wnt-dependent+de+novo+hair+follicle+regeneration+in+adult+mouse+skin+after+wounding&rft.volume=447&rft.issue=7142&rft.pages=316-20&rft.date=2007&rft_id=info%3Adoi%2F10.1038%2Fnature05766&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A887738%23id-name%3DS2CID&rft_id=info%3Apmid%2F17507982&rft_id=info%3Abibcode%2F2007Natur.447..316I&rft.aulast=Ito&rft.aufirst=M&rft.au=Yang%2C+Z&rft.au=Andl%2C+T&rft.au=Cui%2C+C&rft.au=Kim%2C+N&rft.au=Millar%2C+SE&rft.au=Cotsarelis%2C+G&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">Y Shen, Y Guo, C Du, M Wilczynska, S Hellström, T Ny, Mice Deficient in Urokinase-Type Plasminogen Activator Have Delayed Healing of Tympanic Membrane Perforations, PLOS ONE, 2012</span>
</li>
<li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFYoung_AR1987" class="citation journal cs1">Young AR (June 1987). "The sunburn cell". <i><a href="/wiki/Photodermatology" class="mw-redirect" title="Photodermatology">Photodermatology</a></i>. <b>4</b> (3): 127–134. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/3317295">3317295</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Photodermatology&rft.atitle=The+sunburn+cell&rft.volume=4&rft.issue=3&rft.pages=127-134&rft.date=1987-06&rft_id=info%3Apmid%2F3317295&rft.au=Young+AR&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">
<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFSheehanYoung2002" class="citation journal cs1">Sheehan JM, Young AR (June 2002). "The sunburn cell revisited: an update on mechanistic aspects". <i><a href="/wiki/Photochemical_and_Photobiological_Sciences" title="Photochemical and Photobiological Sciences">Photochemical and Photobiological Sciences</a></i>. <b>1</b> (6): 365–377. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fb108291d">10.1039/b108291d</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/12856704">12856704</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:21184034">21184034</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Photochemical+and+Photobiological+Sciences&rft.atitle=The+sunburn+cell+revisited%3A+an+update+on+mechanistic+aspects&rft.volume=1&rft.issue=6&rft.pages=365-377&rft.date=2002-06&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A21184034%23id-name%3DS2CID&rft_id=info%3Apmid%2F12856704&rft_id=info%3Adoi%2F10.1039%2Fb108291d&rft.aulast=Sheehan&rft.aufirst=JM&rft.au=Young%2C+AR&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-pmid26240345-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-pmid26240345_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pmid26240345_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFVelardeDemariaMelovCampisi2015" class="citation journal cs1">Velarde MC, Demaria M, Melov S, Campisi J (August 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547253">"Pleiotropic age-dependent effects of mitochondrial dysfunction on epidermal stem cells"</a>. <i>Proc. Natl. Acad. Sci. U.S.A</i>. <b>112</b> (33): 10407–12. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015PNAS..11210407V">2015PNAS..11210407V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1073%2Fpnas.1505675112">10.1073/pnas.1505675112</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547253">4547253</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26240345">26240345</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proc.+Natl.+Acad.+Sci.+U.S.A.&rft.atitle=Pleiotropic+age-dependent+effects+of+mitochondrial+dysfunction+on+epidermal+stem+cells&rft.volume=112&rft.issue=33&rft.pages=10407-12&rft.date=2015-08&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4547253%23id-name%3DPMC&rft_id=info%3Apmid%2F26240345&rft_id=info%3Adoi%2F10.1073%2Fpnas.1505675112&rft_id=info%3Abibcode%2F2015PNAS..11210407V&rft.aulast=Velarde&rft.aufirst=MC&rft.au=Demaria%2C+M&rft.au=Melov%2C+S&rft.au=Campisi%2C+J&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4547253&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFCrisseyParishHolubar2002" class="citation book cs1">Crissey, John Thorne; Parish, Lawrence C.; Holubar, Karl (2002). <i>Historical Atlas of Dermatology and Dermatologists</i>. Boca Raton, FL: CRC Press. p. 147. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-84214-100-7" title="Special:BookSources/1-84214-100-7"><bdi>1-84214-100-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Historical+Atlas+of+Dermatology+and+Dermatologists&rft.place=Boca+Raton%2C+FL&rft.pages=147&rft.pub=CRC+Press&rft.date=2002&rft.isbn=1-84214-100-7&rft.aulast=Crissey&rft.aufirst=John+Thorne&rft.au=Parish%2C+Lawrence+C.&rft.au=Holubar%2C+Karl&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
<li id="cite_note-SeemaPranay2013-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-SeemaPranay2013_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SeemaPranay2013_37-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-SeemaPranay2013_37-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFSeemaPranayKumar2013" class="citation journal cs1">Seema, Chhabra; Pranay, Tanwar; Kumar, AroraSandeep (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726905">"Civatte bodies: A diagnostic clue"</a>. <i>Indian Journal of Dermatology</i>. <b>58</b> (4): 327. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4103%2F0019-5154.113974">10.4103/0019-5154.113974</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/issn/0019-5154">0019-5154</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726905">3726905</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23919028">23919028</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Indian+Journal+of+Dermatology&rft.atitle=Civatte+bodies%3A+A+diagnostic+clue&rft.volume=58&rft.issue=4&rft.pages=327&rft.date=2013&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3726905%23id-name%3DPMC&rft.issn=0019-5154&rft_id=info%3Apmid%2F23919028&rft_id=info%3Adoi%2F10.4103%2F0019-5154.113974&rft.aulast=Seema&rft.aufirst=Chhabra&rft.au=Pranay%2C+Tanwar&rft.au=Kumar%2C+AroraSandeep&rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3726905&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></span>
</li>
</ol></div>
<h2><span class="mw-headline" id="External_links">External links</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Keratinocyte&action=edit&section=11" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2>
<style data-mw-deduplicate="TemplateStyles:r1217611005">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style>
<div class="side-box-flex">
<div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div>
<div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Keratinocytes" class="extiw" title="commons:Category:Keratinocytes">Keratinocytes</a></span>.</div></div>
</div>
<ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFTangWuMa2010" class="citation journal cs1">Tang L, Wu JJ, Ma Q, et al. (July 2010). "Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization". <i>The British Journal of Dermatology</i>. <b>163</b> (1): 38–47. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1365-2133.2010.09748.x">10.1111/j.1365-2133.2010.09748.x</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/20222924">20222924</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2387064">2387064</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+British+Journal+of+Dermatology&rft.atitle=Human+lactoferrin+stimulates+skin+keratinocyte+function+and+wound+re-epithelialization&rft.volume=163&rft.issue=1&rft.pages=38-47&rft.date=2010-07&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2387064%23id-name%3DS2CID&rft_id=info%3Apmid%2F20222924&rft_id=info%3Adoi%2F10.1111%2Fj.1365-2133.2010.09748.x&rft.aulast=Tang&rft.aufirst=L&rft.au=Wu%2C+JJ&rft.au=Ma%2C+Q&rfr_id=info%3Asid%2Fen.wikipedia.org%3AKeratinocyte" class="Z3988"></span></li></ul>
<div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Skin_and_related_structures" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1063604349">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Skin_microanatomy" title="Template:Skin microanatomy"><abbr title="View this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Skin_microanatomy" title="Template talk:Skin microanatomy"><abbr title="Discuss this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Skin_microanatomy" title="Special:EditPage/Template:Skin microanatomy"><abbr title="Edit this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Skin_and_related_structures" style="font-size:114%;margin:0 4em"><a href="/wiki/Integumentary_system" title="Integumentary system">Skin and related structures</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Human_skin" title="Human skin">Skin</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Epidermis" title="Epidermis">Epidermis</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Stratum_corneum" title="Stratum corneum">Stratum corneum</a></li>
<li><a href="/wiki/Stratum_lucidum" title="Stratum lucidum">Stratum lucidum</a></li>
<li><a href="/wiki/Stratum_granulosum" title="Stratum granulosum">Stratum granulosum</a></li>
<li><a href="/wiki/Stratum_spinosum" title="Stratum spinosum">Stratum spinosum</a></li>
<li><a href="/wiki/Malpighian_layer" title="Malpighian layer">Malpighian layer</a></li>
<li><a href="/wiki/Stratum_basale" title="Stratum basale">Stratum basale</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Basement_membrane" title="Basement membrane">Basement membrane</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a class="mw-selflink selflink">Basal keratinocyte</a></li>
<li><a href="/wiki/Lamina_lucida" title="Lamina lucida">Lamina lucida</a></li>
<li><a href="/wiki/Lamina_densa" title="Lamina densa">Lamina densa</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Dermis" title="Dermis">Dermis</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Papillary_dermis" class="mw-redirect" title="Papillary dermis">Papillary</a>
<ul><li><a href="/wiki/Dermal_papillae" class="mw-redirect" title="Dermal papillae">Dermal papillae</a></li></ul></li>
<li><a href="/wiki/Reticular_dermis" class="mw-redirect" title="Reticular dermis">Reticular</a></li></ul>
</div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Subcutaneous_tissue" title="Subcutaneous tissue">Subcutaneous tissue</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Panniculus" title="Panniculus">Panniculus</a>/<a href="/wiki/Pannus" title="Pannus">Pannus</a> (<a href="/wiki/Panniculus_adiposus" title="Panniculus adiposus">Panniculus adiposus</a></li>
<li><a href="/wiki/Panniculus_carnosus" title="Panniculus carnosus">Panniculus carnosus</a>)</li>
<li><a href="/wiki/Membranous_layer" title="Membranous layer">Membranous layer</a></li>
<li><a href="/wiki/Loose_connective_tissue" title="Loose connective tissue">Loose connective tissue</a></li>
<li><a href="/wiki/Superficial_fascia" class="mw-redirect" title="Superficial fascia">Superficial fascia</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Skin_appendage" title="Skin appendage">Adnexa</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Skin_gland" class="mw-redirect" title="Skin gland">Skin glands</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Sweat_gland" title="Sweat gland">Sweat glands</a>: <a href="/wiki/Apocrine_sweat_gland" title="Apocrine sweat gland">Apocrine sweat gland</a></li>
<li><a href="/wiki/Eccrine_sweat_gland" title="Eccrine sweat gland">Eccrine sweat gland</a></li>
<li><a href="/wiki/Sebaceous_gland" title="Sebaceous gland">Sebaceous</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hair" title="Hair">Hair</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Root_sheath_(hair)" title="Root sheath (hair)">Root sheath</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Outer_root_sheath" title="Outer root sheath">Outer root sheath</a></li>
<li><a href="/wiki/Inner_root_sheath" title="Inner root sheath">Inner root sheath</a>
<ul><li><a href="/wiki/Henle%27s_layer" title="Henle's layer">Henle's layer</a></li>
<li><a href="/wiki/Huxley%27s_layer" title="Huxley's layer">Huxley's layer</a></li></ul></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hair_shaft" class="mw-redirect" title="Hair shaft">Hair shaft</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Cuticle_(hair)" title="Cuticle (hair)">Cuticle</a></li>
<li><a href="/wiki/Cortex_(hair)" title="Cortex (hair)">Cortex</a></li>
<li><a href="/wiki/Medulla_(hair)" title="Medulla (hair)">Medulla</a></li>
<li><a href="/wiki/Matrix_(hair)" class="mw-redirect" title="Matrix (hair)">Bulb with matrix cells</a></li>
<li><a href="/wiki/Hair_follicle" title="Hair follicle">Hair follicle</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Muscle" title="Muscle">Muscle</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Arrector_pili_muscle" title="Arrector pili muscle">Arrector pili muscle</a></li></ul>
</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Pilosebaceous_unit" class="mw-redirect" title="Pilosebaceous unit">Pilosebaceous unit</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li>Hair <a href="/wiki/Sebaceous_gland" title="Sebaceous gland">sebaceous gland</a></li></ul>
</div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Nail_(anatomy)" title="Nail (anatomy)">Nail</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em">
<ul><li><a href="/wiki/Nail_matrix" class="mw-redirect" title="Nail matrix">Nail matrix</a></li>
<li><a href="/wiki/Nail_(anatomy)" title="Nail (anatomy)">Nail plate</a>
<ul><li><a href="/wiki/Lunula_(anatomy)" title="Lunula (anatomy)">Lunula</a></li></ul></li>
<li><a href="/wiki/Eponychium" title="Eponychium">Eponychium</a></li>
<li><a href="/wiki/Paronychium" class="mw-redirect" title="Paronychium">Paronychium</a></li>
<li><a href="/wiki/Hyponychium" title="Hyponychium">Hyponychium</a></li></ul>
</div></td></tr></tbody></table><div></div></td></tr></tbody></table></div></div>' |
Whether or not the change was made through a Tor exit node (tor_exit_node ) | false |
Unix timestamp of change (timestamp ) | '1714084333' |